目に映る以上のもの 視覚系がどのように記憶に寄与しているかを示す新たな研究結果(More than Meets the Eye: New Research Shows How the Visual System Contributes to Memory)

ad

2023-08-17 ニューヨーク大学 (NYU)

image
Photo credit: Sharamand/Getty Images

◆研究により、視覚システムが私たちが見たものを行動に変換するために使用する神経ダイナミクスを特定しました。作業記憶を使用する際、一時的に情報を脳内に保持します。
◆この研究では、視覚記憶を保持するだけでなく、なぜ保持するのかという点も重要であることが示されました。具体的には、視覚記憶の特性を脳内に保存する方法と、その記憶を保存する神経コードが時間とともに変化する方法に焦点が当てられました。また、記憶コードは、過去に記憶した刺激と、その刺激に基づく将来の行動に関する情報を同時に含むことが示されました。
◆これにより、作業記憶の神経ダイナミクスは、記憶を将来の行動に合わせるように変換されることが明らかになりました。

<関連情報>

ヒトのワーキングメモリーの神経集団動態 Neural population dynamics of human working memory

Hsin-Hung Li,Clayton E. Curtis
Current Biology  Published:August 17, 2023
DOI:https://doi.org/10.1016/j.cub.2023.07.067

Highlights

•Both stable and dynamic neural codes support visual spatial working memory (WM)
•Surprisingly, WM dynamics are greater in visual compared to frontoparietal cortex
•Neural dynamics were made interpretable by modeling population-level activity
•Reformatting of WM representations drives neural dynamics

Summary

The activity of neurons in macaque prefrontal cortex (PFC) persists during working memory (WM) delays, providing a mechanism for memory.1,2,3,4,5,6,7,8,9,10,11 Although theory,11,12 including formal network models,13,14 assumes that WM codes are stable over time, PFC neurons exhibit dynamics inconsistent with these assumptions.15,16,17,18,19 Recently, multivariate reanalyses revealed the coexistence of both stable and dynamic WM codes in macaque PFC. 20,21,22,23 Human EEG studies also suggest that WM might contain dynamics.24,25 Nonetheless, how WM dynamics vary across the cortical hierarchy and which factors drive dynamics remain unknown. To elucidate WM dynamics in humans, we decoded WM content from fMRI responses across multiple cortical visual field maps. 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 We found coexisting stable and dynamic neural representations of WM during a memory-guided saccade task. Geometric analyses of neural subspaces revealed that early visual cortex exhibited stronger dynamics than high-level visual and frontoparietal cortex. Leveraging models of population receptive fields, we visualized and made the neural dynamics interpretable. We found that during WM delays, V1 population initially encoded a narrowly tuned bump of activation centered on the peripheral memory target. Remarkably, this bump then spread inward toward foveal locations, forming a vector along the trajectory of the forthcoming memory-guided saccade. In other words, the neural code transformed into an abstraction of the stimulus more proximal to memory-guided behavior. Therefore, theories of WM must consider both sensory features and their task-relevant abstractions because changes in the format of memoranda naturally drive neural dynamics.

ad

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました