糖尿病の傷を3倍早く治す革新的な磁気ゲルを開発(NUS scientists develop innovative magnetic gel that heals diabetic wounds three times faster)

ad

2023-10-19 シンガポール国立大学(NUS)

2023 1019 NN_magnetic gel-4A bandage pre-loaded with magnetic hydrogel is placed on the wound, and an external device is used to accelerate the wound healing process.

◆シンガポールの国立大学(NUS)の研究チームが、糖尿病患者の治癒能力が低下しているため、治癒が遅い慢性的な傷を促進する画期的な磁性の傷治療ジェルを開発しました。
◆この治療法は、皮膚細胞を含むヒドロゲルが含まれた包帯の適用と、外部の磁力デバイスを使用して皮膚細胞を活性化し、傷の治癒プロセスを加速します。
◆実験では、この治療法が従来のアプローチよりも約3倍速く糖尿病性の傷を治癒することが示されました。この技術は、糖尿病性潰瘍の治療に焦点を当てていますが、火傷などの他の複雑な傷の治療にも適用可能です。将来的には、臨床テストを進めて、世界中の多くの患者の結果を改善する効果的で便利な傷治療ソリューションを提供することが目標です。

<関連情報>

糖尿病の創傷治癒を促進するメカノ活性化細胞療法 Mechano-activated Cell Therapy for Accelerated Diabetic Wound Healing

Yufeng Shou, Zhicheng Le, Hong Sheng Cheng, Qimin Liu, Yi Zhen Ng, David Laurence Becker, Xianlei Li, Ling Liu, Chencheng Xue, Natalie Jia Ying Yeo, Runcheng Tan, Jessalyn Low, Arun R.K. Kumar, Kenny Zhuoran Wu, Hua Li, Christine Cheung, Chwee Teck Lim, Nguan Soon Tan, Yongming Chen, Zhijia Liu, Andy Tay
Advanced Materials  Published: 08 September 2023
DOI:https://doi.org/10.1002/adma.202304638

Abstract

Chronic diabetic wounds are a significant global healthcare challenge. Current strategies, such as biomaterials, cell therapies, and medical devices, however, only target a few pathological features and have limited efficacy. We developed a powerful platform technology combining magneto-responsive hydrogel, cells, and wireless magneto-induced dynamic mechanical stimulation (MDMS) to accelerate diabetic wound healing. Our hydrogel encapsulates FDA-approved fibroblasts and keratinocytes to achieve ∼3-fold better wound closure in a diabetic mouse model. MDMS acts as a non-genetic mechano-rheostat to activate fibroblasts, resulting in ∼240% better proliferation, ∼220% more collagen deposition and improved keratinocyte paracrine profiles via the Ras/MEK/ERK pathway to boost angiogenesis. The magneto-responsive property also enables on-demand insulin release for spatiotemporal glucose regulation through increasing network deformation and interstitial flow. By mining scRNAseq data, we identified a mechanosensitive fibroblast subpopulation that can be mechanically tuned for enhanced proliferation and collagen production, maximizing therapeutic impact. Our “all-in-one” system addresses major pathological factors associated with diabetic wounds in a single platform, with potential applications for other challenging wound types.

ad

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました