UCIの研究がヒトと昆虫の視覚形成における類似点と相違点を示す(UC Irvine study shows similarities and differences in human and insect vision formation)

ad

2024-02-22 カリフォルニア大学校アーバイン校(UCI)

カリフォルニア大学アーバイン校の研究者は、人間と昆虫の視覚色素である11-シス-レチナールの生成についての新たな発見を行いました。この研究により、RPE65酵素の変異が網膜疾患、特にレーバー先天性失明症にどのように関連しているかが深く理解されました。X線結晶構造解析を用いて、昆虫のNinaBと人間のRPE65の類似性と相違点が明らかになりました。これにより、視覚障害の原因に関連するRPE65の構造の新たな洞察が得られました。

<関連情報>

カロテノイド切断酵素が収斂的に進化して視覚的発色団を生成した Carotenoid cleavage enzymes evolved convergently to generate the visual chromophore

Yasmeen J. Solano,Michael P. Everett,Kelly S. Dang,Jude Abueg & Philip D. Kiser
Nature Chemical Biology  Published:14 February 2024
DOIh:ttps://doi.org/10.1038/s41589-024-01554-z

Abstract

The retinal light response in animals originates from the photoisomerization of an opsin-coupled 11-cis-retinaldehyde chromophore. This visual chromophore is enzymatically produced through the action of carotenoid cleavage dioxygenases. Vertebrates require two carotenoid cleavage dioxygenases, β-carotene oxygenase 1 and retinal pigment epithelium 65 (RPE65), to form 11-cis-retinaldehyde from carotenoid substrates, whereas invertebrates such as insects use a single enzyme known as Neither Inactivation Nor Afterpotential B (NinaB). RPE65 and NinaB couple trans–cis isomerization with hydrolysis and oxygenation, respectively, but the mechanistic relationship of their isomerase activities remains unknown. Here we report the structure of NinaB, revealing details of its active site architecture and mode of membrane binding. Structure-guided mutagenesis studies identify a residue cluster deep within the NinaB substrate-binding cleft that controls its isomerization activity. Our data demonstrate that isomerization activity is mediated by distinct active site regions in NinaB and RPE65—an evolutionary convergence that deepens our understanding of visual system diversity.

ad

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました