タンパク質構造予測のためのAIとスーパーコンピュータの利用を効率化する新しいコンピューティングフレームワーク(New computing framework streamlines the use of AI and supercomputers for protein structure prediction)

ad

2024-06-26 アルゴンヌ国立研究所(ANL)

アルゴンヌ国立研究所とイリノイ大学アーバナ・シャンペーン校の研究により、AIツールとアルゴリズムを使用した3Dタンパク質構造の理解が簡素化・高速化されました。この研究は、新しい計算フレームワークAPACEを開発し、AlphaFold2を高性能計算(HPC)システムで効率的に運用するもので、タンパク質の構造予測を高速化しました。APACEは、複数のテラバイトのタンパク質データベースを効果的に管理し、CPUとGPUの最適化により予測ステップを並列化します。この手法により、科学者は迅速かつ正確にタンパク質の構造を研究し、新薬の開発を加速できます。この研究成果は、AIモデルとHPCの組み合わせが多くの科学分野で利用できることを示しています。

<関連情報>

APACE:AlphaFold2と生物物理学の発見を加速するサービスとしての先進コンピューティング APACE: AlphaFold2 and advanced computing as a service for accelerated discovery in biophysics

Hyun Park, Parth Patel, Roland, and E. A. Huerta
Proceedings of the National Academy of Sciences  Published:June 24, 2024
DOI:https://doi.org/10.1073/pnas.2311888121

タンパク質構造予測のためのAIとスーパーコンピュータの利用を効率化する新しいコンピューティングフレームワーク(New computing framework streamlines the use of AI and supercomputers for protein structure prediction)

Significance

We introduce APACE, AlphaFold2 and advanced computing as a service, a computational framework that optimizes AlphaFold2 to run at scale in high-performance computing platforms, and which effectively handles this TB-size AI model and database. We showcase the use of APACE in the Delta and Polaris supercomputers to accelerate protein structure prediction for a variety of proteins, and demonstrate that using 200 ensembles distributed over 300 NVIDIA A100 GPUs, APACE reduces time-to-insight from days to minutes. This framework may be readily linked with self-driving laboratories to enable automated discovery at scale.

Abstract

The prediction of protein 3D structure from amino acid sequence is a computational grand challenge in biophysics and plays a key role in robust protein structure prediction algorithms, from drug discovery to genome interpretation. The advent of AI models, such as AlphaFold, is revolutionizing applications that depend on robust protein structure prediction algorithms. To maximize the impact, and ease the usability, of these AI tools we introduce APACE, AlphaFold2 and advanced computing as a service, a computational framework that effectively handles this AI model and its TB-size database to conduct accelerated protein structure prediction analyses in modern supercomputing environments. We deployed APACE in the Delta and Polaris supercomputers and quantified its performance for accurate protein structure predictions using four exemplar proteins: 6AWO, 6OAN, 7MEZ, and 6D6U. Using up to 300 ensembles, distributed across 200 NVIDIA A100 GPUs, we found that APACE is up to two orders of magnitude faster than off-the-self AlphaFold2 implementations, reducing time-to-solution from weeks to minutes. This computational approach may be readily linked with robotics laboratories to automate and accelerate scientific discovery.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました