揺れセンサーが継続的に炎症を監視(Shaking sensor continuously monitors inflammation)

ad

2024-12-05 ノースウェスタン大学

揺れセンサーが継続的に炎症を監視(Shaking sensor continuously monitors inflammation)
Postdoctoral fellow Hossein Zargartalebi, the study’s first author, holds the first-of-its-kind sensor, which monitors fluctuating proteins within the body in real time.

ノースウェスタン大学の研究者たちは、体内のタンパク質レベルの変動をリアルタイムでモニタリングできる新たな埋め込み型デバイスを開発しました。このデバイスは、DNAの鎖がタンパク質に結合し、それを振動させて放出し、再び新たなタンパク質を捕捉するという仕組みを持ちます。この手法により、時間経過とともにさまざまなタンパク質をサンプリングし、炎症マーカーの変化を測定することが可能です。実証実験では、糖尿病ラットにおいて炎症のタンパク質バイオマーカーを正確かつ高感度に測定することに成功しました。この研究は、炎症性サイトカインや心不全のタンパク質バイオマーカーなど、急性および慢性疾患のリアルタイム管理と予防に向けた基盤を築くものです。

<関連情報>

アクティブ・リセット・タンパク質センサーにより、生体内での炎症の連続モニタリングが可能になる Active-reset protein sensors enable continuous in vivo monitoring of inflammation

H. Zargartalebi, S. Mirzaie, A. GhavamiNejad, S. U. Ahmed, […], and S. O. Kelley
Science  Published:5 Dec 2024
DOI:https://doi.org/10.1126/science.adn2600

Editor’s summary

Reagentless biosensing, which is typically based on affinity receptors such as antibodies or aptamers, has the intrinsic challenge of slow dissociation of protein analytes, especially for the high-affinity interactions needed to achieve high sensitivity. This challenge has impeded the ability to do continuous sensing. Zargartalebi et al. used high-frequency oscillation of positive voltage onto sensing electrodes to substantially accelerate the dissociation of protein analytes (see the Perspective by Wang). The main advantages include simple implementation and potentially universal applicability on different sensor designs. The authors implemented their electrodes onto a microneedle device and showed that they could track cytokine levels related to diabetes in a mouse model. —Marc S. Lavine

Abstract

Continuous measurement of proteins in vivo is important for real-time disease management and prevention. Implantable sensors for monitoring small molecules such as glucose have been available for more than a decade. However, analysis of proteins remains an unmet need because the lower physiological levels require that sensors have high affinities, which are linked to long complexation half-lives (t1/2 ~20 hours) and slow equilibration when concentrations decrease. We report active-reset sensors by use of high-frequency oscillations to accelerate dissociation, which enables regeneration of the unbound form of the sensor within 1 minute. When implemented within implanted devices, these sensors allow for real-time, in vivo monitoring of proteins within interstitial fluid. Active-reset protein sensors track biomarker levels on a physiological timescale for inflammation monitoring in living animals.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました