AIが卵巣がん検出で専門家を上回る (AI Better at Detecting Ovarian Cancer)

ad

2025-01-13 スウェーデン王立工科大学 (KTH)

AIモデルが超音波画像を用いた卵巣がんの診断において、専門医よりも高い精度を示すことが、KTH王立工科大学とカロリンスカ研究所(KI)の研究者による新たな研究で明らかになりました。研究チームは、8か国20病院から収集した3,652人の患者の17,000枚以上の超音波画像を使用して、AIモデルを訓練・評価しました。その結果、AIモデルの診断精度は平均86.3%で、専門医の82.6%や経験の浅い検査者の77.7%を上回りました。この成果は、AIが卵巣の異常診断において有用な支援ツールとなり、専門医への紹介件数の削減や、患者への迅速かつ費用対効果の高い医療提供に寄与する可能性を示しています。今後、ストックホルムのSödersjukhusetで臨床試験を実施し、日常診療におけるAI支援の安全性と有用性を評価する予定です。この研究は、スウェーデン研究評議会やスウェーデンがん協会などの支援を受け、『Nature Medicine』誌に掲載されました。

<関連情報>

AIによる卵巣がん超音波検診の国際的多施設共同検証 International multicenter validation of AI-driven ultrasound detection of ovarian cancer

Filip Christiansen,Emir Konuk,Adithya Raju Ganeshan,Robert Welch,Joana Palés Huix,Artur Czekierdowski,Francesco Paolo Giuseppe Leone,Lucia Anna Haak,Robert Fruscio,Adrius Gaurilcikas,Dorella Franchi,Daniela Fischerova,Elisa Mor,Luca Savelli,Maria Àngela Pascual,Marek Jerzy Kudla,Stefano Guerriero,Francesca Buonomo,Karina Liuba,Nina Montik,Juan Luis Alcázar,Ekaterini Domali,Nelinda Catherine P. Pangilinan,Chiara Carella,… Elisabeth Epstein
Nature Medicine  Published:02 January 2025
DOI:https://doi.org/10.1038/s41591-024-03329-4

AIが卵巣がん検出で専門家を上回る (AI Better at Detecting Ovarian Cancer)

Abstract

Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen’s kappa, Matthew’s correlation coefficient, diagnostic odds ratio and Youden’s J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました