AIがセリアック病診断において病理医と同等の精度を発揮(AI is as good as pathologists at diagnosing coeliac disease, study finds)

ad

2025-03-27 ケンブリッジ大学

AIがセリアック病診断において病理医と同等の精度を発揮(AI is as good as pathologists at diagnosing coeliac disease, study finds)

Microscopic images showing healthy villi (left) and diseased villi (right). (Credit: Florian Jaeckle)

ケンブリッジ大学の研究者たちは、AIを活用してセリアック病の診断を迅速化する手法を開発しました。セリアック病は自己免疫疾患で、グルテン摂取により小腸の絨毛が損傷し、栄養吸収障害を引き起こします。従来の診断では、血液検査と十二指腸の生検が必要で、時間と労力を要していました。新たに開発された機械学習アルゴリズムは、4つのNHS病院から収集した約3,400枚の生検画像で訓練され、独立したデータセットで97%以上の精度を達成しました。このAIツールは、病理医と同等の診断能力を持ち、診断プロセスの迅速化と医療資源の効率的な活用に寄与する可能性があります。

<関連情報>

機械学習が病理学者レベルのセリアック病診断を達成 Machine Learning Achieves Pathologist-Level Celiac Disease Diagnosis

Florian Jaeckle, Ph.D., James Denholm, Ph.D., Benjamin Schreiber, Ph.D., Shelley C. Evans, B.Med.Sci. (Hons)., Mike N. Wicks, M.Sc., James Y. H. Chan, M.B.B.S., Adrian C. Bateman, M.D., Sonali Natu, M.D., Mark J. Arends, Ph.D., and Elizabeth Soilleux, Ph.D.
New England Journal of Medicine AI  Published: March 27, 2025

Abstract

Background
The diagnosis of celiac disease (CD), an autoimmune disorder with an estimated global prevalence of around 1%, generally relies on the histologic examination of duodenal biopsies. However, interpathologist agreement for CD diagnosis is estimated at no more than 80%. We aim to improve CD diagnosis by developing an accurate, machine-learning-based diagnostic classifier.

Methods
We present a machine learning model that diagnoses the presence or absence of CD from a set of duodenal biopsies representative of real-world clinical data. Our model was trained on a diverse dataset of 3383 whole-slide images of hematoxylin- and eosin-stained duodenal biopsies from four hospitals featuring five different WSI scanners along with their clinical diagnoses. We trained our model using the multiple-instance-learning paradigm in a weakly supervised manner with cross-validation. We evaluated it on an independent test set featuring 644 unseen scans from a different regional NHS trust. In addition, we compared the model’s predictions with independent diagnoses from four specialist pathologists on a subset of the test data.

Results
Our model diagnosed CD in an independent test set from a previously unseen source with accuracy, sensitivity, and specificity exceeding 95% and an area under the receiver operating characteristic curve exceeding 99%. These results indicate that the model has the potential to outperform pathologists. In comparing the model’s predictions with diagnoses on unseen test data from four independent pathologists, we found statistically indistinguishable results between pathologist–pathologist and pathologist–model interobserver agreement (P>96%).

Conclusions
Our model achieved pathologist-level performance in diagnosing the presence or absence of CD from a representative set of duodenal biopsies, including biopsies from a previously unseen hospital. We concluded that our model has the potential to accurately identify or rule out CD, thereby significantly reducing the time required for pathologists to make a diagnosis. (Funded by the National Institute of Health and Care [NIHR205502] and others.)

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました