自然の設計図と機構を利用した代謝モニタリング技術(Sensor technology uses nature’s blueprint and machinery to monitor metabolism in body)

ad

2025-03-26 カリフォルニア大学ロサンゼルス校 (UCLA)

カリフォルニア大学ロサンゼルス校(UCLA)の研究チームは、体内の代謝物をリアルタイムでモニタリングできる先進的なセンサー技術を開発しました。このセンサーは、自然界の代謝経路を模倣し、酵素や補因子を利用して多様な代謝物を検出します。従来のセンサーが主に血糖値の測定に限られていたのに対し、この新技術は数千種類の代謝物を同時に追跡でき、疾患の診断や治療、薬剤開発、生物学的システムの理解に新たな可能性をもたらします。

<関連情報>

タンデム代謝反応に基づくセンサーが生体内メタボロミクスを解き放つ Tandem metabolic reaction–based sensors unlock in vivo metabolomics

Xuanbing Cheng https://orcid.org/0000-0001-7682-0759, Zongqi Li, Jialun Zhu, +25 , and Sam Emaminejad
Proceedings of the National Academy of Sciences  Published:February 27, 2025
DOI:https://doi.org/10.1073/pnas.2425526122

自然の設計図と機構を利用した代謝モニタリング技術(Sensor technology uses nature’s blueprint and machinery to monitor metabolism in body)

Significance

This work presents a sensor design that harnesses naturally proven metabolic pathways and evolutionarily robust molecular toolkits (enzymes and cofactors) for reliable, real-time, and continuous in vivo monitoring of a vast majority of metabolites. The architecture is based on a multifunctional single-wall-carbon-nanotube electrode that supports tandem metabolic reactions linkable to oxidoreductase-based electrochemical analysis. It robustly integrates cofactors and enzymes for metabolite intermediation, detection, and interference inactivation, while self-mediating these reactions at the limit of enzyme activity. These tandem metabolic reaction–based sensors can catalyze the advancement of metabolomics from in vitro to in vivo settings, addressing missing context, real-time interaction, and high-resolution temporal dimensions in metabolomics-driven research and medical applications, such as microbiome studies and metabolic disorders.

Abstract

Mimicking metabolic pathways on electrodes enables in vivo metabolite monitoring for decoding metabolism. Conventional in vivo sensors cannot accommodate underlying complex reactions involving multiple enzymes and cofactors, addressing only a fraction of enzymatic reactions for few metabolites. We devised a single-wall-carbon-nanotube-electrode architecture supporting tandem metabolic pathway–like reactions linkable to oxidoreductase-based electrochemical analysis, making a vast majority of metabolites detectable in vivo. This architecture robustly integrates cofactors, self-mediates reactions at maximum enzyme capacity, and facilitates metabolite intermediation/detection and interference inactivation through multifunctional enzymatic use. Accordingly, we developed sensors targeting 12 metabolites, with 100-fold-enhanced signal-to-noise ratio and days-long stability. Leveraging these sensors, we monitored trace endogenous metabolites in sweat/saliva for noninvasive health monitoring, and a bacterial metabolite in the brain, marking a key milestone for unraveling gut microbiota–brain axis dynamics.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました