AI技術SOLPCS(ソルピクス)によるアルツハイマー型認知症の進行予測~短期間の認知機能データで長期的な認知機能変化を予測、早期診断・治療・臨床試験の効率化に貢献~

ad

2025-04-07 東京科学大学

AI技術SOLPCS(ソルピクス)によるアルツハイマー型認知症の進行予測~短期間の認知機能データで長期的な認知機能変化を予測、早期診断・治療・臨床試験の効率化に貢献~

東京科学大学の研究チームは、短期間の認知機能テストデータから長期的な認知機能の変化を予測するAIアルゴリズム「SOLPCS(ソルピクス)」を開発しました。このアルゴリズムは、自己組織的に予測モデルを構築し、高精度な予測を可能にします。米国のADNIおよび日本のJ-ADNIのデータを用いた検証で、SOLPCSの有効性が確認されました。この技術により、アルツハイマー型認知症の早期診断や進行リスクの特定、さらには臨床試験の効率化が期待されます。

<関連情報>

アルツハイマー病における縦断的認知機能低下の自己組織化予測-分類-重ね合わせ: 新しい臨床研究手法への応用 Self-Organized Prediction-Classification-Superposition of Longitudinal Cognitive Decline in Alzheimer’s Disease: An Application to Novel Clinical Research Methodology

Hiroyuki Sato; Ryoichi Hanazawa; Keisuke Suzuki; Atsushi Hashizume; Akihiro Hirakawa
IEEE Journal of Biomedical and Health Informatics  Published:26 February 2025
DOI:https://doi.org/10.1109/JBHI.2025.3546020

Abstract

Progressive cognitive decline spanning across decades is characteristic of Alzheimer’s disease (AD). Various predictive models have been designed to realize its early onset and study the long-term trajectories of cognitive test scores across populations of interest. Research efforts have been geared towards superimposing patients’ cognitive test scores with the long-term trajectory denoting gradual cognitive decline, while considering the heterogeneity of AD. Multiple trajectories representing cognitive assessment for the long-term have been developed based on various parameters, highlighting the importance of classifying several groups based on disease progression patterns. In this study, a novel method capable of self-organized prediction, classification, and the overlay of long-term cognitive trajectories based on short-term individual data was developed, based on statistical and differential equation modeling. Here, “self-organized” denotes a data-driven mechanism by which the prediction model adaptively configures its structure and parameters to classify individuals and estimate long-term trajectories. We validated the predictive accuracy of the proposed method on two cohorts: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Japanese ADNI. We also presented two practical illustrations of the simultaneous evaluation of risk factor associated with both the onset and the longitudinal progression of AD, and an innovative randomized controlled trial design for AD that standardizes the heterogeneity of patients enrolled in a clinical trial. These resources would improve the power of statistical hypothesis testing and help evaluate the therapeutic effect. The application of predicting the trajectory of longitudinal disease progression goes beyond AD, and is especially relevant for progressive and neurodegenerative disorders.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました