肺の器官形成に関わる新たな分子・細胞メカニズムを解明(Researchers Reveal New Molecular and Cellular Mechanisms Underlying Pulmonary Organogenesis)

ad

2025-04-03 中国科学院(CAS)​

中国科学院広州生物医薬健康研究所の研究チームは、高スループット空間トランスクリプトミクスを用いて、マウス肺の発生過程における包括的な時空間アトラスを構築し、肺器官形成に関する新たな分子・細胞メカニズムを明らかにしました。この研究では、胚性12.5日目(E12.5)から出生直後(P0)までの主要な発生段階における遺伝子発現動態を詳細に解析し、肺の複雑な構造がどのように形成されるかを示しています。特に、近位(気管に近い部分)と遠位(肺胞に近い部分)で異なる遺伝子発現パターンが観察され、近位部ではSox2やFoxj1、遠位部ではSox9やEtv5の発現が顕著でした。また、肺胞ニッチの成熟度の違いも明らかになり、Angpt2やEpha3の高発現が成熟した肺胞形成に寄与することが示唆されました。このアトラスは、人間の肺発生や呼吸器疾患の理解に貢献し、特発性肺線維症や慢性閉塞性肺疾患などの新たな治療標的の特定に役立つ可能性があります。

<関連情報>

発育中のマウス肺の時空間トランスクリプトームアトラス Spatiotemporal transcriptome atlas of developing mouse lung

Xiaogao Meng, Wenjia Li, Jian Xu, Yao Yao, An Gong, Yumeng Yang, Fangfang Qu, Chenkai Guo, Hui Zheng, Guizhong Cui, Shengbao Suo, Guangdun Peng
Science Bulletin  Available online: 10 March 2025
DOI:https://doi.org/10.1016/j.scib.2025.03.012

Graphical abstract

肺の器官形成に関わる新たな分子・細胞メカニズムを解明(Researchers Reveal New Molecular and Cellular Mechanisms Underlying Pulmonary Organogenesis)

Abstract

The functional development of the mammalian lung is a complex process that relies on the spatial and temporal organization of multiple cell types and their states. However, a comprehensive spatiotemporal transcriptome atlas of the developing lung has not yet been reported. Here we apply high-throughput spatial transcriptomics to allow for a comprehensive assessment of mouse lung development comprised of two critical developmental events: branching morphogenesis and alveologenesis. We firstly generate a spatial molecular atlas of mouse lung development spanning from E12.5 to P0 based on the integration of published single cell RNA-sequencing data and identify 10 spatial domains critical for functional lung organization. Furthermore, we create a lineage trajectory connecting spatial clusters from adjacent time points in E12.5–P0 lungs and explore TF (transcription factor) regulatory networks for each lineage specification. We observe the establishment of pulmonary airways within the developing lung, accompanied by the proximal–distal patterning with distinct characteristics of gene expression, signaling landscape and transcription factors enrichment. We characterize the alveolar niche heterogeneity with maturation state differences during the later developmental stage around birth and demonstrate differentially expressed genes, such as Angpt2 and Epha3, which may perform a critical role during alveologenesis. In addition, multiple signaling pathways, including ANGPT, VEGF and EPHA, exhibit increased levels in more maturing alveolar niche. Collectively, by integrating the spatial transcriptome with corresponding single-cell transcriptome data, we provide a comprehensive molecular atlas of mouse lung development with detailed molecular domain annotation and communication, which would pave the way for understanding human lung development and respiratory regeneration medicine.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました