うつ病における精密医療アプローチを開発(New precision mental health care approach for depression addresses unique patient needs)

ad

2025-04-23 アリゾナ大学

アリゾナ大学とオランダのラドバウド大学の研究チームは、約10年間にわたり世界中の60以上の臨床試験から約1万人分のデータを収集・分析し、うつ病治療における個別化アプローチを開発しました。この研究では、患者の年齢、性別、併存疾患などの特性を考慮し、抗うつ薬、認知療法、行動療法、対人関係療法、短期力動的療法の5つの治療法の効果を比較しました。その結果、患者の特性に応じて最適な治療法を推奨する臨床意思決定支援ツールの開発が進められています。このツールは、簡単な自己報告や臨床情報を基に、個々の患者に最適な治療法を提案することを目指しており、今後の臨床試験を通じて実用化が期待されています。

<関連情報>

成人うつ病に対する経験的に支持された5つの主要な治療法の中から、個別化された選択を支援する多変量予測モデルを開発。システマティックレビューと個人参加者データネットワークメタ解析の研究計画書 Developing a multivariable prediction model to support personalized selection among five major empirically-supported treatments for adult depression. Study protocol of a systematic review and individual participant data network meta-analysis

Ellen Driessen ,Orestis Efthimiou,Frederik J. Wienicke,Jasmijn Breunese,Pim Cuijpers,Thomas P. A. Debray,David J. Fisher,Marjolein Fokkema,Toshiaki A. Furukawa,Steven D. Hollon,Anuj H. P. Mehta,Richard D. Riley,Madison R. Schmidt,Jos W. R. Twisk,Zachary D. Cohen
PLOS One  Published: April 23, 2025
DOI:https://doi.org/10.1371/journal.pone.0322124

Abstract

Background

Various treatments are recommended as first-line options in practice guidelines for depression, but it is unclear which is most efficacious for a given person. Accurate individualized predictions of relative treatment effects are needed to optimize treatment recommendations for depression and reduce this disorder’s vast personal and societal costs.

Aims

We describe the protocol for a systematic review and individual participant data (IPD) network meta-analysis (NMA) to inform personalized treatment selection among five major empirically-supported depression treatments.

Method

We will use the METASPY database to identify randomized clinical trials that compare two or more of five treatments for adult depression: antidepressant medication, cognitive therapy, behavioral activation, interpersonal psychotherapy, and psychodynamic therapy. We will request IPD from identified studies. We will conduct an IPD-NMA and develop a multivariable prediction model that estimates individualized relative treatment effects from demographic, clinical, and psychological participant characteristics. Depressive symptom level at treatment completion will constitute the primary outcome. We will evaluate this model using a range of measures for discrimination and calibration, and examine its potential generalizability using internal-external cross-validation.

Conclusions

We describe a state-of-the-art method to predict personalized treatment effects based on IPD from multiple trials. The resulting prediction model will need prospective evaluation in mental health care for its potential to inform shared decision-making. This study will result in a unique database of IPD from randomized clinical trials around the world covering five widely used depression treatments, available for future research.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました