AIによる関節X線画像の複雑な骨層分離に成功~BLS-GAN技術により、骨の重なりを克服して関節病変の精密な評価が可能に~

ad

2025-05-07 北海道大学

北海道大学量子集積エレクトロニクス研究センターの池辺将之教授らの研究チームは、関節X線画像における骨の重なりを解消する新たなAI技術「BLS-GAN(Bone Layer Separation GAN)」を開発しました。従来のX線画像では、骨の重なりが診断の妨げとなっていましたが、BLS-GANは高品質な骨層画像を生成し、骨の特徴と質感を保持することが可能です。この技術により、関節リウマチなどの関節疾患の診断・モニタリング・予後評価が精密に行えるようになります。研究成果は、2025年2月に米国で開催されたAI関連国際会議「AAAI Conference on Artificial Intelligence」に採択されました。

AIによる関節X線画像の複雑な骨層分離に成功~BLS-GAN技術により、骨の重なりを克服して関節病変の精密な評価が可能に~
提案手法による重なり合う骨層の分離

<関連情報>

BLS-GAN:従来のX線画像における骨の重なりを解消するための深層層分離フレームワーク BLS-GAN: A Deep Layer Separation Framework for Eliminating Bone Overlap in Conventional Radiographs

Haolin Wang,Yafei Ou,Prasoon Ambalathankandy,Gen Ota,Pengyu Dai,Masayuki Ikebe,Kenji Suzuki,Tamotsu Kamishima
The 39th AAAI Conference on Artificial Intelligence (AAAI-25)   Published:2025-04-11
DOI:https://doi.org/10.1609/aaai.v39i7.32826

Abstract

Conventional radiography is the widely used imaging technology in diagnosing, monitoring, and prognosticating musculoskeletal (MSK) diseases because of its easy availability, versatility, and cost-effectiveness. Bone overlaps are prevalent in conventional radiographs, and can impede the accurate assessment of bone characteristics by radiologists or algorithms, posing significant challenges to conventional clinical diagnosis and computer-aided diagnosis. This work initiated the study of a challenging scenario – bone layer separation in conventional radiographs, in which separate overlapped bone regions enable the independent assessment of the bone characteristics of each bone layer and lay the groundwork for MSK disease diagnosis and its automation. This work proposed a Bone Layer Separation GAN (BLS-GAN) framework that can produce high-quality bone layer images with reasonable bone characteristics and texture. This framework introduced a reconstructor based on conventional radiography imaging principles, which achieved efficient reconstruction and mitigates the recurrent calculations and training instability issues caused by soft tissue in the overlapped regions. Additionally, pre-training with synthetic images was implemented to enhance the stability of both the training process and the results. The generated images passed the visual Turing test, and improved performance in downstream tasks. This work affirms the feasibility of extracting bone layer images from conventional radiographs, which holds promise for leveraging layer separation technology to facilitate more comprehensive analytical research in MSK diagnosis, monitoring, and prognosis.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました