より安全性の高いゲノム編集技術の送達技術を開発

ad
ad

2020-03-13   京都大学iPS細胞研究所

ポイント

  1. デュシェンヌ型筋ジストロフィー(DMD)注1など遺伝子変異が原因である疾患の新規治療法を目指した遺伝子修復においては、ゲノム編集ツールの細胞内への送達技術が鍵となる。
  2. CRISPR-Cas9注2ゲノム編集に必要なCas9タンパク質とガイドRNAを効率よくナノ粒子に封入して送達する技術であるNanoMEDICシステムを開発した。
  3. 本システムは、Cas9/ガイドRNAが一過性に発現してゲノム編集を誘導し、オフターゲット変異注3が起きるリスクが軽減することが分かった。

1. 要旨

 難病の半数以上は遺伝子変異が原因で起きることが知られています。それら疾患の新しい治療法開発に向け、CRISPR-Cas9などのゲノム編集技術を用いた遺伝子修復が注目されています。ゲノム編集技術においては、そのツールを細胞内に運ぶためのベクター注4が必要となりますが、現在遺伝子治療でよく用いられているウイルスベクターは、細胞内に導入後も長期的に発現し、狙った箇所以外のゲノムを変えてしまうオフターゲット変異などを起こしてしまう可能性があります。ゲノム編集技術を医療に応用するためには、安全性高くCRISPR-Cas9とガイドRNAを細胞に送りこむシステムの開発が必要です。

 ピーター・ジー博士(元CiRA臨床応用研究部門)、堀田秋津講師(CiRA同部門)らは、CiRAと武田薬品工業株式会社(以下、「武田薬品」)との大型共同研究プログラムであるT-CiRAプロジェクト別注の一環として、新たな送達技術であるNanoMEDICを開発しました。このシステムは細胞へ導入されたCRISPR-Cas9/ガイドRNAが一時的にだけ作用し、また、iPS細胞を使った実験から、オフターゲット変異のリスクを抑え、かつ高効率にゲノム編集を行えることが分かりました。さらに、マウスの生体内においてもゲノム編集の効果が長期的に持続することも確認できました。今回の成果は、今後の遺伝子治療に向けた基盤技術として、医療応用に貢献することが期待されます。

 この研究成果は2020年3月13日午後7時(日本時間)に英国科学誌「Nature Communications」でオンライン公開されました。

2. 研究の背景

 まだ根本的な治療法のない難病の一つに、デュシェンヌ型筋ジストロフィー(DMD)があります。DMDの患者さんは国内に約3,500人、全世界では約250,000人いると推定されていますが、主に男児が発症し、その原因は性染色体であるX染色体上のジストロフィン遺伝子に変異があることが知られています。ジストロフィン遺伝子のエクソン注5が欠損したり重複したりすることで、遺伝子の読み枠注6が本来のものからずれてしまい、その結果ジストロフィンタンパク質が正常に作られなくなります。

 そこで、DMD患者さんの遺伝子変異をゲノム編集技術を用いて修復することで、ジストロフィンタンパクが作られるようにし、症状を改善しようという、遺伝子治療に向けた研究が進められています。堀田講師らの研究グループは2014年に、患者さん由来iPS細胞のジストロフィン遺伝子をゲノム編集によりエクソンスキッピング注7を起こして修復し、分化させた筋細胞で正常型のジストロフィンタンパクが作られるようになったと報告しています(参考: CiRA HP 2014年11月27日「iPS細胞を使った遺伝子修復に成功 〜デュシェンヌ型筋ジストロフィーの変異遺伝子を修復〜」)。

 CRISPR-Cas9システムを細胞に導入する際のベクターとして、比較的高効率に導入・送達できるアデノ随伴ウイルス(AAV)注8やレンチウイルス注9を利用したベクターがよく用いられます。しかし、 AAVやレンチウイルスは導入してから数年以上経っても発現が続くことがあり、それによるオフターゲット変異が懸念されています。また、AAVのもつDNA断片が、宿主のゲノムに挿入されてしまう現象も報告されています。

 将来、患者さんへの遺伝子治療を実現するためには、CRISPR-Cas9を安全性高く、標的の細胞に届けることが必要です。そのためにも、オフターゲット変異や宿主DNAへの挿入といったリスクを低減させる、一過性の送達技術の開発が求められています。

3. 研究結果

1) 一時的にのみ発現する送達技術であるNanoMEDICを開発した

 今回、研究グループは細胞内に取り込まれ、一過性に発現する送達技術を開発する上で、細胞膜から放出されるナノサイズ(10億分の1メートル)のカプセルであるウイルス様粒子(VLP)に注目しました。遺伝子治療分野では古くから利用されてきたレンチウイルスベクター注9の遺伝子群を最大限除去することで作成されるVLPは、形状はウイルスに似ていますが、ウイルスゲノムを包含せず、発現は一過的です。このVLP内部に、DNA切断酵素であるCas9タンパク質と標的ゲノム配列を認識するガイドRNAを搭載することで、ゲノム編集を行うことを目指しました。

図1 ウイルスとウイルス様粒子(VLP)の違い

 具体的には、VLPが細胞膜上で形成される際にCas9が取り込まれるよう、小分子に反応してドッキングするタンパク質注10の片割れ(FRBタンパク質)をCas9に連結し、もう一方の片割れ(FKBP12タンパク質)をVLPの裏打ちタンパク質(Gag)に連結しました。これら遺伝子を搭載したプラスミドDNA注11をHEK293T細胞注12に導入して、さらに小分子(AP21697)を加えると、Cas9が粒子内部に呼び寄せられます。さらに、ガイドRNAもGagと結合するように工夫して、粒子内部に呼び寄せました。その後、粒子の細胞膜が閉じられることにより、Cas9とガイドRNAが封入されたVLPができ上がります。グループはこのVLPをNanoMEDICと名付けました。

図2 NonoMEDICの作製方法とCas9タンパク質を内封するしくみ

図3 NanoMEDICを透過型電子顕微鏡で観察した様子。

直径は130-140 nmほど

2) 患者さん由来iPS細胞を使って、NanoMEDICを用いたゲノム編集の効果を確認した

 次に、研究グループはNanoMEDICによりゲノム編集を有効に行うことができるのかを、DMD患者さん由来iPS細胞を用いて検証しました。

 まず、ジストロフィン遺伝子の44番目のエクソン(エクソン44)がないためにジストロフィンタンパクが作れない患者さんからiPS細胞を作製し、さらに骨格筋細胞へ分化させました。エクソン45の前部分を切断するとエクソン45が切除され、ジストロフィンタンパクが生成されるようになることが知られていますが、今回はその部分と後ろの部分をそれぞれ認識するガイドRNAを含んだNanoMEDICを骨格筋細胞に導入し、エクソン45を切除することでジストロフィンタンパクが作られるようにしました。すると、エクソン45の前部分のみを切断した場合は36%、前後を切断した場合は92%の確率でエクソン45が切除され、それに対応して前後を切断した場合において最もジストロフィンタンパクの発現が回復していることが分かりました。

図4 患者さん由来iPS細胞から作製した骨格筋細胞におけるエクソンスキッピング

A: CRISPR-Cas9によりエクソン45をスキップ(削除)する前と後のジストロフィンmRNA を、その大きさにより分けて調べた。図の縦軸はmRNAの長さ(bp: 塩基対)を示しており、エクソンスキッピングが起きた後のmRNAはその分長さが短くなるため、下部にバンドが見える。

B: エクソン45を切除できた割合を示す。エクソン45の前後の部分双方を切断することで、非常に高効率にエクソンスキッピングを起こすことに成功した。

C: エクソン45を切除したことによりジストロフィンタンパクが作られるようになった。mRNAでのエクソンスキッピングの効率とジストロフィンタンパクの量が相関している。

 また、懸念されているオフターゲット変異について、NanoMEDICを用いてゲノム編集を行った際にどうなるかを検証しました。HEK293T細胞に、6番染色体上のVEGFA遺伝子の配列の一部を認識するガイドRNAをもつNanoMEDICを導入しました。なお、この配列は非常によく似た配列が5番染色体上にあり、オフターゲット変異が起こりやすい配列です。実験の結果、DNAプラスミドをベクターとして用いてゲノム編集を起こした場合は、15%以上の確率で 5番染色体上でのオフターゲット変異が起こしましたが、NanoMEDICを用いた場合はそれがほとんど起こりませんでした。このことから、NanoMEDICはオフターゲット変異を起こしにくい技術であることが分かりました。

図5 NanoMEDICはCRISPR-Cas9によるオフターゲット変異のリスクを低減する

HEK293T細胞の中でVEGFA遺伝子を狙って、CRIPR-Cas9によるゲノム編集を行った。CRISPR-Cas9を導入するためのベクターとして、プラスミドDNAベクター(左)、NanoMEDIC(右)をそれぞれ用い、狙った箇所(On)と非標的のオフターゲット(Off)での変異発生率(縦軸)を調べたところ、NanoMEDICではオフターゲット変異のリスクがかなり低減された。

3) マウス生体内でもNanoMEDICを用いてエクソンスキッピングを誘導できた

 さらに研究グループは、生体内においてもヒトのジストロフィン遺伝子を標的としたエクソンスキッピングを行えるかを調べることにしました。

 まず、NanoMEDICに緑色発光タンパク質であるルシフェラーゼタンパクを搭載し、マウスに筋肉内注射しました。これにより、NanoMEDICが送達した場所において発現している間は発光するので、NanoMEDICが届けられた場所や、発現している期間を調べることができます。実際には、注射をされた筋肉以外の臓器にNanoMEDICが到達するようなことはなく、さらに、注射をしてから3日後には蛍光が消失しており、本技術が一過性に発現するものであることが確認されました。

 次に、NanoMEDICにより届けられたCas9とガイドRNAにより、生体内でも狙った組織と標的ゲノム配列でゲノム編集が行われるかを調べました。ルシフェラーゼを作る遺伝子を二つのエクソンに分割し、その間にヒトジストロフィン遺伝子のエクソン45を挟みこんだ配列を組み込んだ遺伝子組換えマウスを作製しました。このマウスに、患者さん由来iPS細胞を用いた実験で使用した、エクソン45の前部分と後ろ部分を認識するガイドRNAをそれぞれもつNanoMEDIC二種類を筋肉内注射しました。通常ではルシフェリンタンパク質が分断されており発光は起こりませんが、うまくエクソン45が切除されれば、分断されていたルシフェラーゼ遺伝子が接合され、ルシフェラーゼタンパク質が作られるため発光します。実験の結果、NanoMEDICを投与して誘導されたエクソンスキッピング活性が160日後まで続いており、一回のNanoMEDICの投与でエクソンスキッピングが安定的に誘導されていることが分かりました。

図6 NanoMEDIC投与後の、筋細胞におけるエクソンスキッピング活性

エクソンスキッピングが誘導されると発光するマウスにNanoMEDICを一回投与すると、160日後までエクソンスキッピングが持続していた。写真は、NanoMEDICを投与されたマウス(5匹)。注射をした後ろ脚部分の筋肉で発光が観察され、エクソンスキッピングが起きている様子が観察される。

 最後に、DMDモデル(mdx)マウスにおいて、同様にNanoMEDICを用いたゲノム編集にてエクソンスキッピングを誘導できるかを検証しました。mdxマウスのジストロフィン遺伝子はエクソン23の中に一塩基変異があるためにジストロフィンタンパク質の発現が途中で止まってしまいますが、エクソン23をスキッピングすることでタンパク質発現を回復できることが分かっています。エクソン23の前の部位と後の部位を認識するガイドRNAを含むNanoMEDICの二種類をマウスの筋肉内に注射をしたところ、エクソン23が1.6%の割合でエクソンスキッピングを誘導できました。この結果より、NanoMEDICが生体内の骨格筋細胞にも送達され、狙ったゲノムDNAの箇所にエクソンスキッピングを起こすことが確認できました。

4. まとめ

 本研究では、ゲノム編集技術を用いた遺伝子治療を開発する上で鍵となる、一過性に発現しオフターゲット変異リスクの低い送達技術であるNanoMEDICを開発しました。また、本技術は安全性が高いことに加え、生体内でも有効にゲノム編集を行えることを確認できました。NanoMEDICは比較的大きな分子を包含することができるため、今後は様々なより大きなゲノム編集ツールなどを細胞に送りことができ、ゲノム編集や遺伝子治療分野で汎用性のある技術となることが期待されます。さらに、研究グループは本技術を患者さんに応用することを見据え、臨床レベルで求められる量を製造する技術も開発しています。一方で、NanoMEDICはその形成にタンパク質が使用されていますが、そのタンパク質が宿主からの免疫反応を誘引する可能性があるため、今後はタンパク質を使用しない送達技術についての研究も期待されます。

5. 論文名と著者

タイトルとURLをコピーしました