インプラント周囲の瘢痕組織抑制への道を示唆する研究(Study could point way to reducing scar tissue around implants)

ad

2025-05-05 シカゴ大学(UChicago)

シカゴ大学プリツカー分子工学研究所の研究チームは、ペースメーカーやインスリンポンプなどの埋め込み型医療機器の周囲に形成される瘢痕組織(コラーゲン密度)の蓄積を最大68%抑制する新しい半導体ポリマー材料を開発しました。この材料は、ポリマーの主鎖にセレノフェンを組み込み、側鎖に免疫調節機能を持つ化合物を導入することで、免疫系による異物反応を軽減しつつ、バイオエレクトロニクスに必要な電気性能を維持しています。この成果は、埋め込み型デバイスの長期安定性を向上させ、患者の健康維持に寄与する可能性があります。研究は『Nature Materials』誌に掲載され、米国国立衛生研究所(NIH)の支援を受けています。

<関連情報>

異物反応を抑制したバイオエレクトロニクス用半導体ポリマーの免疫適合性設計 Immune-compatible designs of semiconducting polymers for bioelectronics with suppressed foreign-body response

Nan Li,Seounghun Kang,Zhichang Liu,Shinya Wai,Zhe Cheng,Yahao Dai,Ani Solanki,Songsong Li,Yang Li,Joseph Strzalka,Michael J. V. White,Yun-Hi Kim,Bozhi Tian,Jeffrey A. Hubbell & Sihong Wang
Nature Materials  Published:17 April 2025
DOI:https://doi.org/10.1038/s41563-025-02213-x

インプラント周囲の瘢痕組織抑制への道を示唆する研究(Study could point way to reducing scar tissue around implants)

Abstract

One of the greatest obstacles to achieving implantable electronics with long-term functionality and minimized inflammatory reactions is the immune-mediated foreign-body response (FBR). Recently, semiconducting polymers with mixed electron–ion conductivity have been demonstrated as promising candidates to achieve direct electrical interfacing on bio-tissues. However, there is limited understanding of their immune compatibility in vivo, and strategies for minimizing the FBR through molecular design remain underexplored. Here we introduce a set of molecular design strategies for enhancing the immune compatibility of semiconducting polymers. Specifically, we show that selenophene, when incorporated in the backbone, can mitigate the FBR by suppressing macrophage activation. In addition, side-chain functionalization with immunomodulatory groups decreases the FBR further by downregulating the expression of inflammatory biomarkers. Together, our synthesized polymers achieve suppression of the FBR by as much as 68% (as indicated by the collagen density). In the meantime, these immune-compatible designs still provide a high charge-carrier mobility of around 1 cm2 V-1 s-1. We anticipate that such immune-compatible design principles can be translated to a variety of conjugated polymers to suppress the FBR for implantable applications.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました