プロスタグランジンD2受容体DP1の構造的活性化機構を解明(Researchers Reveal Structural Basis of Prostaglandin D2 Receptor DP1 Activation and Its Implications for Drug Design)

ad

2025-05-30 中国科学院(CAS)

中国科学院上海薬物研究所の研究チームは、アレルギーや炎症に関与する受容体DP1の活性化機構を高精度で解明しました。クライオ電子顕微鏡により、非活性状態と天然・合成アゴニストとの複合体構造を解析し、DP1が従来のGPCRとは異なる独自の活性化経路を持つことを発見しました。これにより、DP1を標的とする新薬の設計が加速され、炎症性疾患の治療に新たな可能性が開かれます。研究成果は新規薬理学の基盤として注目されています。

<関連情報>

プロスタグランジンD2受容体DP1のリガンド認識と受容体活性化の分子基盤 Molecular basis for ligand recognition and receptor activation of the prostaglandin D2 receptor DP1

Jiuyin Xu, Yanli Wu, Youwei Xu, +10 , and H. Eric Xu
Proceedings of the National Academy of Sciences  Published:May 29, 2025
DOI:https://doi.org/10.1073/pnas.2501902122

Significance

The prostaglandin D2 receptor (DP1) functions as a critical regulator of diverse physiological processes, including sleep–wake cycles, allergic responses, and inflammatory cascades. By determining high-resolution cryo-EM structures of DP1 in multiple functional states, we uncovered an activation mechanism that challenges the classical GPCR paradigm. Our structures reveal ligand-specific activation pathways and unique transmembrane helix interactions that differ markedly from the conventional toggle switch model characteristic of Class A GPCRs. These molecular insights establish a structural foundation for developing next-generation DP1-targeted therapeutics with enhanced selectivity and reduced side effects, addressing a significant unmet need in treating disorders ranging from sleep disturbances to inflammatory diseases.

Abstract

The prostaglandin D2 receptor 1 (DP1), a rhodopsin-like Class A GPCR, orchestrates critical physiological and pathological processes, ranging from sleep regulation to inflammatory responses and cardiovascular function. Despite its therapeutic significance, structural insights into DP1 activation mechanisms have remained elusive. Here, using cryoelectron microscopy (cryo-EM), we determined high-resolution structures of human DP1 in both inactive and active states, with the latter captured in complex with its endogenous agonist PGD2 or the synthetic agonist BW245C, bound to the stimulatory G protein, Gs. Our structures, coupled with functional and mutagenesis studies, unveiled unique structural features of DP1, including an alternative activation mechanism, ligand-selectivity determinants, and G protein coupling characteristics. These molecular insights provide a rational framework for designing selective DP1-targeted therapeutics, both agonists and antagonists, with enhanced specificity and reduced off-target effects, opening broad avenues for treating DP1-associated disorders.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました