ウェアラブルデバイスの睡眠データで早産予測(Sleep data from wearable device may help predict preterm birth)

ad

2025-06-24 ワシントン大学セントルイス校

ワシントン大学の研究チームは、妊婦の睡眠データを解析することで早産リスクを予測できる新手法を開発した。665人の妊婦が第1・第2トリメスターにウェアラブル装置を装着し、得られた睡眠パターンを機械学習で分析。睡眠時間の平均値よりも、開始・終了時刻のばらつきなど「睡眠の安定性」が早産の予測に有効であると判明した。この手法は非侵襲的かつ臨床応用に適しており、早期介入の可能性を広げる成果となっている。

<関連情報>

早産予測のための睡眠に基づくアクチグラフ機械学習モデルの検証 Validation of sleep-based actigraphy machine learning models for prediction of preterm birth

Benjamin C. Warner,Peinan Zhao,Erik D. Herzog,Antonina I. Frolova,Sarah K. England & Chenyang Lu
npj Women’s Health  Published:20 June 2025
DOI:https://doi.org/10.1038/s44294-025-00082-y

ウェアラブルデバイスの睡眠データで早産予測(Sleep data from wearable device may help predict preterm birth)

Abstract

Disruptive sleep is a well-established predictor of preterm birth. However, the exact relationship between sleep behavior and preterm birth outcomes remains unknown, in part because prior work has relied on self-reported sleep data. With the advent of smartwatches, it is possible to obtain more reliable and accurate sleep data, which can be utilized to evaluate the impact of specific sleep behaviors in concert with machine learning. We evaluate motion actigraphy data collected from a cohort of participants undergoing pregnancy, and train several machine learning models based on aggregate features engineered from this data. We then evaluate the relative impact from each of these actigraphy features, as well as features derived from questionnaires collected from participants. Our findings suggest that actigraphy data can predict preterm birth outcomes with a degree of effectiveness, and that variability in sleep patterns is a relatively fair predictor of preterm birth.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました