損傷したDNA修復の分子設計図をスーパーコンピューターが描く(Summit supercomputer draws molecular blueprint for repairing damaged DNA)

ad

2025-03-12 オークリッジ国立研究所 (ORNL)

損傷したDNA修復の分子設計図をスーパーコンピューターが描く(Summit supercomputer draws molecular blueprint for repairing damaged DNA)
The Summit supercomputer revealed how damaged strands of DNA are surgically repaired by a molecular pathway called nucleotide excision repair, or NER. NER’s protein components can change shape to perform different functions of repair on broken strands of DNA (blue and red helix). Credit: Tanmoy Paul, Georgia State University

米オークリッジ国立研究所は、スーパーコンピュータ「Summit」を用いて、DNA損傷を修復する「核酸除去修復(NER)」の重要複合体「PInC」の構造と動態を解明した。PInCはXPFやXPGなどの酵素を損傷部位へ正確に導き、切除と修復を担う。Cryo-EMとAlphaFold2のデータを組み合わせた分子動力学シミュレーションにより、PInC内部の構造変化や酵素間相互作用が可視化され、遺伝性疾患の原因領域特定に貢献する可能性が示された。

<関連情報>

核酸切断修復におけるプレインシジョン複合体の分子構造と機能ダイナミクス Molecular architecture and functional dynamics of the pre-incision complex in nucleotide excision repair

Jina Yu,Chunli Yan,Tanmoy Paul,Lucas Brewer,Susan E. Tsutakawa,Chi-Lin Tsai,Samir M. Hamdan,John A. Tainer & Ivaylo Ivanov
Nature Communications  Published:01 October 2024
DOI:https://doi.org/10.1038/s41467-024-52860-y

Abstract

Nucleotide excision repair (NER) is vital for genome integrity. Yet, our understanding of the complex NER protein machinery remains incomplete. Combining cryo-EM and XL-MS data with AlphaFold2 predictions, we build an integrative model of the NER pre-incision complex(PInC). Here TFIIH serves as a molecular ruler, defining the DNA bubble size and precisely positioning the XPG and XPF nucleases for incision. Using simulations and graph theoretical analyses, we unveil PInC’s assembly, global motions, and partitioning into dynamic communities. Remarkably, XPG caps XPD’s DNA-binding groove and bridges both junctions of the DNA bubble, suggesting a novel coordination mechanism of PInC’s dual incision. XPA rigging interlaces XPF/ERCC1 with RPA, XPD, XPB, and 5′ ssDNA, exposing XPA’s crucial role in licensing the XPF/ERCC1 incision. Mapping disease mutations onto our models reveals clustering into distinct mechanistic classes, elucidating xeroderma pigmentosum and Cockayne syndrome disease etiology.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました