血流感染の診断時間を12時間に短縮する新プラットフォームを開発(Researchers Develop New Platform to Slash Bloodstream Infection Diagnosis Time to 12 Hours)

ad

2025-07-16 中国科学院(CAS)

血流感染の診断時間を12時間に短縮する新プラットフォームを開発(Researchers Develop New Platform to Slash Bloodstream Infection Diagnosis Time to 12 Hours)
A microfluidic chip-based platform enables rapid detection of pathogens. (Image by QIBEBT)

中国科学院青島生物能源・プロセス研究所の研究チームは、従来48〜72時間を要する血流感染症(BSI)の診断と有効な抗菌薬の特定を、わずか12時間で実施できる新型プラットフォームを開発した。このシステムは、微小液滴静置アレイ(SDA)チップ2種を用い、個別の細菌をナノリットル規模で培養・検出後、質量分析で同定する。その後、抗菌薬感受性テスト(AST)チップでAI補助下の画像解析により各薬剤の最小発育阻止濃度(MIC)を算出する。臨床血液からの直接検査は未実施だが、スパイクサンプルや臨床分離株で高精度な結果が得られた。

<関連情報>

スタティック・ドロップレット・アレイ(SDA)チップを用いた血液中の病原体の迅速な定量的検出、同定および抗菌薬感受性試験 Rapid quantitative detection, identification and antimicrobial susceptibility testing of pathogens in blood using the static droplet array (SDA) chip-based method

Zhidian Diao, Anle Ge , Hao Zhou, Xuan Zhou, Lingyan Kan, Wei Gao, Wei Shen, Yuetong Ji, Hongwei Wang, Jian Xu, Xixian Wang, Bo Ma
Sensors and Actuators B: Chemical  Available online: 24 June 2025
DOI:https://doi.org/10.1016/j.snb.2025.138183

Highlights

  • Static droplet array chip enables rapid quantitative pathogen detection in unprocessed blood and chip-based AST.
  • Microchamber array isolates single bacteria for absolute quantification in 3–5 h over 10–10,000 CFU/mL post-lysis.
  • AI-assisted image recognition tracks bacterial growth under antibiotics to yield rapid, accurate MIC values.

Abstract

Bloodstream infection (BSI) has emerged as a significant and life-threatening global health concern. Rapid and accurate identification of pathogens in the bloodstream and antimicrobial susceptibility testing (AST) are essential for intervention and treatment. Here, we developed a static droplet array (SDA) chip for the rapid quantitative detection and identification of pathogens in unprocessed blood and subsequent Chip-AST experiments on pathogens. The microchamber array enables isolated individual bacteria in chambers, thus allowing for quantification of bacteria within 3–5 h after cell lysis and medium exchange. The detection limit of the SDA chip can reach 10 CFU/mL. Further export of cultured pathogens from chips allows subsequent strain identification. In addition, artificial intelligence (AI) image recognition is employed in the rapid assessment of AST on pathogen. The entire detection time has been reduced to approximately 12 h, representing a improvement over traditional method. Finally, the experimental process was validated using clinical samples. This microfluidic chip-based detection method offers a promising, rapid, and cost-effective solution for diagnosing BSI and rapid AST, with the potential to improve public health outcomes.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました