AIで設計した新規抗生物質が薬剤耐性菌に効果(Using generative AI, researchers design compounds to kill drug-resistant bacteria)

ad

2025-08-15 マサチューセッツ工科大学(MIT)

MITの研究チームは生成AIを活用し、薬剤耐性淋菌(Neisseria gonorrhoeae)と多剤耐性黄色ブドウ球菌(MRSA)に有効な新規抗生物質候補を設計した。AIが理論的に生成した分子は既存抗生物質とは構造的に異なり、細菌外膜合成や膜破壊を通じて殺菌する新しい作用機序を持つ。研究では、断片ベース手法と自由生成手法の2つを用い、計3600万以上の化合物を生成・スクリーニング。最終的に合成可能だった候補のうち、NG1は耐性淋菌を、DN1はMRSA感染をマウスで有効に抑制した。両化合物は新規標的や広範な膜作用を通じて強い抗菌活性を示した。これらの成果は抗生物質開発を抜本的に刷新する可能性を持ち、現在非営利団体Phare Bioと共に改良・前臨床試験が進められている。

AIで設計した新規抗生物質が薬剤耐性菌に効果(Using generative AI, researchers design compounds to kill drug-resistant bacteria)With help from artificial intelligence, MIT researchers have discovered novel antibiotics that can combat two hard-to-treat infections: a drug-resistant form of gonorrhea and multi-drug-resistant Staphylococcus aureus (MRSA).
Credit: iStock, MIT News

<関連情報>

新規抗生物質設計のための生成型深層学習アプローチ A generative deep learning approach to de novo antibiotic design

Aarti Krishnan ∙ Melis N. Anahtar ∙ Jacqueline A. Valer ∙ … ∙ Connor W. Coley ∙ Felix Wong ∙ James J. Collins
Cell  Published:August 14, 2025
DOI:https://doi.org/10.1016/j.cell.2025.07.033

Highlights

  • Genetic algorithms and variational autoencoders enable fragment-based and de novo design
  • Seven of 24 custom-synthesized compounds show selective antibacterial activity
  • Two lead compounds display unique modes of action against N. gonorrhoeae and S. aureus
  • Two lead compounds show efficacy against multidrug-resistant strains and in mouse models

Summary

The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing de novo antibiotics through two approaches: a fragment-based method to comprehensively screen >107 chemical fragments in silico against Neisseria gonorrhoeae or Staphylococcus aureus, subsequently expanding promising fragments, and an unconstrained de novo compound generation, each using genetic algorithms and variational autoencoders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead compounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of action and reduced bacterial burden in vivo in mouse models of N. gonorrhoeae vaginal infection and methicillin-resistant S. aureus skin infection. We further validated structural analogs for both compound classes as antibacterial. Our approach enables the generative deep-learning-guided design of de novo antibiotics, providing a platform for mapping uncharted regions of chemical space.

 

抗生物質発見におけるディープラーニングアプローチ A Deep Learning Approach to Antibiotic Discovery

Jonathan M. Stokes ∙ Kevin Yang ∙ Kyle Swanson ∙ … ∙ Tommi S. Jaakkola ∙ Regina Barzilay ∙ James J. Collins
Cell  Accepted: January 15, 2020
DOI:https://doi.org/10.1016/j.cell.2020.01.021

Highlights

  • A deep learning model is trained to predict antibiotics based on structure
  • Halicin is predicted as an antibacterial molecule from the Drug Repurposing Hub
  • Halicin shows broad-spectrum antibiotic activities in mice
  • More antibiotics with distinct structures are predicted from the ZINC15 database

Summary

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub—halicin—that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました