学習と記憶に重要なCaMKIIαの酸化還元メカニズムを解明(CaMKIIα Redox Mechanism Revealed as Key to Learning and Memory)

ad

2025-08-12 中国科学院(CAS)

中国科学院生物物理研究所の研究チームは、学習・記憶の鍵となる分子機構としてCaMKIIαのレドックス修飾を解明しました。野生型マウスでは学習課題により海馬でCaMKIIαのS-ニトロソ化が増加しましたが、この修飾を欠く変異マウスは著しい記憶障害を示しました。解析の結果、修飾欠損は安静時に過剰な神経伝達物質放出を招き、認知課題下でシナプス応答が鈍化することが分かりました。研究チームはさらに、神経型一酸化窒素合成酵素をCaMKIIαへ誘導し選択的S-ニトロソ化を促進する分子「SNOTAC」を設計。嗅覚投与で記憶障害マウスの記憶機能を回復させました。本成果は、CaMKIIαのS-ニトロソ化が記憶形成に不可欠であることを示す初の証拠であり、標的型レドックス調節「精密レドックス」に基づく新たな治療戦略を提示します。

学習と記憶に重要なCaMKIIαの酸化還元メカニズムを解明(CaMKIIα Redox Mechanism Revealed as Key to Learning and Memory)
CaMKIIα S-nitrosation and its precise regulation play a key role in learning and memory (Image by CHEN Chang’s group)

<関連情報>

CaMKIIαのS-ニトロシル化とそのSNOTACによる精密な酸化還元調節は、学習と記憶に重要な役割を果たす S-nitros(yl)ation of CaMKIIα and its precision redox regulation by SNOTAC plays a critical role in learning and memory

Boyu Chu, Xinhua Qiao, Hui Ye, Xiaoli Cui, Shuli Zhang, Wenting Su, Yuying Zhang, Chuanxin Sun, Xuanhao Wu, Tiepeng Wang, Hua Li, Jianbing Wu, Zhangjian Huang, Chang Chen
Redox Biology  Available online: 30 July 2025
DOI:https://doi.org/10.1016/j.redox.2025.103784

Abstract

Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) and nitric oxide (NO) both play vital roles in learning and memory; however, the underlying mechanisms connecting them have remained elusive. To address this question, our study surprisingly observed that during learning and memory tasks, S-nitrosation of CaMKIIα, a key redox-based post-translational modification, significantly increased in mouse hippocampus. We then constructed mice with mutations in the major S-nitrosation sites of CaMKIIα (C280/289V) and found that the mutant mice exhibited remarkable cognitive impairments and attenuated long-term potentiation (LTP). Mechanistically, we demonstrated that the SNO-CaMKIIα mutation increased presynaptic release probability by increasing the interaction and the phosphorylation of synapsin I (Syn1). Excessive vesicle release in the resting state leads to invalid postsynaptic activation, resulting in reduced variability in postsynaptic AMPAR-mediated transmission and impaired response capacity of learning and memory. This reduction of response capacity was also detected in naturally aging mice, indicating it may serve as a determining factor underlying cognitive impairments. Furthermore, we developed the S-nitrosation targeting chimera (SNOTAC), a precision redox modulator designed to enhance the interaction between CaMKIIα and nNOS. Intranasal administration of SNOTAC increased the CaMKIIα S-nitrosation level in mouse hippocampus and successfully rescued learning and memory impairment. These findings establish that redox modification, CaMKIIα S-nitrosation, plays a vital, yet previously unrecognized role in the physiological processes of learning and memory. Moreover, the SNOTAC strategy pioneers a novel paradigm for precision redox intervention, highlighting the potential of targeted redox modulation for cognitive impairment.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました