シアノバクテリアの代謝変動を制御するタンパク質複合体の研究(Redox-Driven Protein Complexes Signal Metabolic Modulation in Cyanobacteria)

ad

2025-09-24 パシフィック・ノースウェスト国立研究所(PNNL)

米国PNNLの研究は、シアノバクテリアがレドックス状態の変化を感知し、タンパク質複合体を介して代謝を調節する仕組みを解明した。光合成生物であるシアノバクテリアは、光環境や栄養条件に応じて電子伝達系を切り替え、効率的に成長やエネルギー生産を行う必要がある。本研究では、質量分析や分子相互作用解析を組み合わせ、レドックス駆動で可逆的に形成・解離するタンパク質複合体が代謝経路の切り替えを担うことを示した。この知見は、光合成の基本理解を深めるとともに、バイオ燃料やバイオ製品の生産最適化にも応用できると期待される。

<関連情報>

マルチオミクス解析により、光撹乱下におけるSynechococcus Elongatus PCC 7942 の炭素代謝の時間スケールが明らかになった Multi-Omics Reveals Temporal Scales of Carbon Metabolism in Synechococcus Elongatus PCC 7942 Under Light Disturbance

Connah G. M. Johnson, Zachary Johnson, Liam S. Mackey, Xiaolu Li, Natalie C. Sadler, Tong Zhang, Wei-Jun Qian, Pavlo Bohutskyi, Song Feng, et al.
PRX Life  Published: 2 September, 2025
DOI: https://doi.org/10.1103/l2dp-kw2t

Abstract

Central carbon metabolism in model cyanobacteria involves multiple pathways to adapt to energy-light limitations across diel cycles. However, the success in mechanistic modeling for phenotypic prediction of the protein regulators in the metabolic state depends on capturing the vast possibilities emerging from multiple regulatory pathways in complex biological processes. Here, we developed a physics-informed machine learning approach based on energy-landscape concepts to predict regulatory proteins responding to cyclic circadian and unforeseen light perturbations in cyanobacterial metabolic networks. Our approach provides interpretable de novo models for inferring gene expression dynamics from Synechococcus elongatus over diel cycles and using redox proteome analysis to distinguish immediate light-responsive elements from circadian-regulated processes in carbon metabolism pathways. We identified distinct temporal signatures with the analysis of the redox proteome: there was an immediate shift in cysteine redox states accompanied by a limited change in protein abundance under constant illumination and after 2 hours of darkness. This discovery indicates that the generation of reductants coordinates photoinduced electron transport with redox metabolic pathways in two discernable molecular mechanisms: fast redox-based protein modifications occur immediately after the light disturbance, followed by slow transcriptional regulations across networks. This temporal regulation reveals how metabolic networks integrate rapid light responses with programmed circadian rhythms to maintain cellular homeostasis under the light-energy limitations over the diel cycle.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました