細胞内のmicroRNA濃度を簡便に定量する新技術を開発!~新しいがん診断や個別化医療への応用に期待~

ad

2025-10-24 北海道大学

Web要約 の発言:
北海道大学電子科学研究所の三友秀之准教授らは、生きた細胞内のmicroRNA(miRNA)濃度を簡便かつ高精度に定量化する新技術を開発した。独自設計の「二足歩行型DNAウォーカー」を金ナノ粒子上に構築し、検出シグナルと内部基準シグナルを同時に発する比率蛍光センサーを実現。これにより、細胞内環境の変動(イオン濃度など)を自動補正し、抽出や前処理を要せずに生細胞中でのmiRNA分布を可視化できるようになった。miRNAはがんや感染症など多くの疾患の診断・治療標的となるバイオマーカーであり、本技術は個別化医療や創薬研究への応用が期待される。成果は『Analytical Chemistry』誌に掲載され、同誌の表紙にも選出された。

細胞内のmicroRNA濃度を簡便に定量する新技術を開発!~新しいがん診断や個別化医療への応用に期待~
金ナノ粒子上の二足歩行型DNAウォーカーを用いて、環境変動を補正しつつ、生細胞内miRNAを簡便かつ高精度に定量検出

<関連情報>

二足歩行型DNAウォーカー比率蛍光センサーによる細胞内microRNA-21の高感度・定量検出 Highly Sensitive and Quantitative Detection of microRNA-21 in Cells Using Bipedal DNA Walker-Based Ratiometric Fluorescent Sensor

Wenting Wei,Han Lin,Kuniharu Ijiro,and Hideyuki Mitomo
Analytical Chemistry  Published: October 21, 2025
DOI:https://doi.org/10.1021/acs.analchem.5c04705

Abstract

Accurate detection of low-abundance microRNA (miRNA) as tumor biomarkers in body fluids and cells is critical due to its strong association with tumor initiation, progression, invasion, and metastasis. DNA walkers enable signal amplification through cyclic enzymatic reactions, offering powerful strategies for the highly sensitive detection of low-abundance miRNAs. However, fluctuations in the cellular microenvironment─such as variations in ion concentration, enzyme activity, temperature, and pH across subcellular compartments─can disrupt amplification efficiency and compromise detection accuracy. To address this challenge, we developed a symmetric bipedal DNA walker design in which one “leg” generates a detection signal while the other “reference leg” synchronously amplifies a dynamic (environment-responsive) internal reference signal. Unlike traditional static internal reference strategies, this design introduces a real-time, synchronized internal reference during the DNA walking process to correct for system errors. When combined with ratiometric fluorescence-based error compensation, this approach effectively eliminates signal variation caused by nanoparticle loading, strand assembly, and environmental fluctuations, thereby improving the detection precision and reproducibility. The system, constructed on gold nanoparticles using an inverted hairpin scaffold, demonstrated robust and consistent performance under varied experimental conditions. Confocal ratiometric fluorescence imaging enabled the high-contrast quantification of intracellular miRNA-21 (miR-21) levels across different cell lines. Moreover, spatially resolved fluorescence signals revealed heterogeneous miR-21 distribution within individual cells, providing valuable insights into its subcellular localization and functional relevance. This strategy represents a reliable platform for accurate miRNA quantification even in complex biological environments.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました