心疾患患者の入院リスクをAIで予測するモデルを開発(UB pharmacy professor develops AI model to predict hospitalization of at-risk cardiac patients)

ad

2026-01-20 バッファロー大学(UB)

米国のニューヨーク州立大学バッファロー校の研究チームは、入院リスクや入院格差に関する要因を分析した研究成果を発表した。研究では、社会経済的背景や居住環境、医療アクセスの違いが、特定の人々における入院率や重症化リスクに大きく影響していることを示している。特に、慢性疾患を抱える患者では、予防医療の不足や地域医療資源の偏在が、不要な入院や医療負担増につながっていることが明らかになった。研究者らは、医療制度そのものだけでなく、教育、収入、住環境といった社会的要因が健康アウトカムを左右する重要な決定因子であると指摘する。今回の知見は、医療費削減や患者負担軽減を目的とした政策立案において、入院を減らすための包括的・予防的アプローチの必要性を示唆している。

<関連情報>

地域健康調査データを用いた心血管リスク因子を持つ患者の入院リスクおよび90日以内の再入院リスクを予測する機械学習モデルの開発 Development of machine learning models to predict risk of hospitalisation and 90-day readmission among patients with cardiovascular risk factors using community health survey data

Arinze Nkemdirim Okere,Tianfeng Li,Md Mohaimenul Islam,…
BMJ Health & Care Informatics  Published:31 December 2025

心疾患患者の入院リスクをAIで予測するモデルを開発(UB pharmacy professor develops AI model to predict hospitalization of at-risk cardiac patients)

Abstract

Objectives This study aimed to develop and validate machine learning (ML) models to predict all-cause hospital admissions and 90-day readmissions using structured, patient-reported survey data.

Methods A cross-sectional survey was conducted between 3 July 2021 and 18 December 2022, among US adults aged ≥18 years with at least one cardiovascular risk factor. Participants were recruited through social media, community pharmacies and outpatient clinics. The final sample included 1318 participants. Primary outcomes were any all-cause hospitalisation and readmission within 90 days. Eight supervised ML models were trained using an 80:20 train–test split and 10-fold cross-validation. Model performance was evaluated using area under the receiver operating characteristic curve (AUROC), precision, recall, F1 score and calibration metrics. SHapley Additive exPlanations (SHAP) values identified key predictors.

Results Among 1318 participants, 35.0% reported at least one hospitalisation and 10.4% reported a 90-day readmission. The Extra Trees (ET) model demonstrated the best performance across both outcomes. For hospitalisation, ET achieved an AUROC of 0.93, precision of 0.83 and recall of 0.87. For readmission, AUROC was 0.99 with precision of 0.95 and recall of 0.96. SHAP analysis identified heart disease, medication burden, race/ethnicity, employment and insurance status as the most influential predictors.

Discussion Patient-reported data reflecting behavioural, social and clinical factors can predict hospitalisations with high accuracy, complementing traditional EHR-based models.

Conclusions Integrating such patient-reported and behavioural data into electronic health records could enable earlier identification of high-risk individuals and support targeted, preventive interventions to improve healthcare outcomes.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました