2026-02-05 東北大学

図1. ゼブラフィッシュ幼生(モデル生物:生命現象を研究するために選ばれた共通の生物)の通常時(図1A)と腸炎症誘発時における腸の形状計測(図1B・C)と腸運動による腸内の流動性ペクレ数(腸の活発度)と腸壁から吸収されたグルコースの吸収量シャーウッド数(栄養吸収度)との関係(図1D)。栄養吸収度は腸内流動性の二乗に比例して増加する関係を定量的に解明。
<関連情報>
- https://www.tohoku.ac.jp/japanese/2026/02/press20260205-01-intestine.html
- https://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press20260205_01web_intestine.pdf
- https://pubs.aip.org/aip/pof/article/38/2/021904/3378545/A-Taylor-dispersion-framework-links-peristaltic
テイラー分散フレームワークは、ゼブラフィッシュの幼生の腸管における蠕動流とグルコース吸収を結び付けている
A Taylor dispersion framework links peristaltic flow to glucose absorption in the intestine of zebrafish larvae
Jiawei Huang;Keiko Numayama-Tsuruta;Takuji Ishikawa;Kenji Kikuchi
Physics of Fluids Published:February 03 2026
DOI:https://doi.org/10.1063/5.0311805
Peristaltic motility shapes luminal transport and thus nutrient uptake, yet direct in vivo links between motility, flow, and absorption remain scarce. Here, leveraging the optical transparency of zebrafish larvae, we combine fluorescence imaging and particle tracking to quantify peristalsis, intestinal flow, and glucose uptake measured by gallbladder fluorescence after oral delivery of fluorescent glucose. We define a motility–flow index from contraction frequency and amplitude together with flow intensity and show that it predicts nondimensional uptake in a manner consistent with Taylor–Aris dispersion. Acetylcholine increased motility, strengthened flow, and enhanced glucose absorption. In contrast, dextran sulfate sodium induced inflammation, flattened intestinal folds, suppressed motility and flow, and shifted transport toward a low Péclet number regime consistent with entropic slowdown. Across normal and inflamed conditions, absorption collapsed onto a single quadratic relation with the motility–flow index. Liposome coadministration enhanced uptake by comparable factors in both groups. Together, these results indicate that motility driven transport is the dominant source of uptake variation under the present conditions, and provide an in vivo benchmark and a generalizable theoretical–experimental framework for dispersion based descriptions of intestinal absorption in systems where the peristaltic wavelength and period and the intestinal geometry are quantitatively accessible.


