古代の微生物が地球外生命体の探索に役立つかもしれない(Ancient microbes may help us find extraterrestrial life forms)

ad
ad

光を取り込むタンパク質に照らされた数十億年前の地球 Earth of billions of years ago illuminated by light-capturing proteins

2022-06-27 カリフォルニア大学リバーサイド校(UCR)

科学者たちは、生きた微生物に含まれる光捕獲タンパク質を用いて、地球最古の生物がどのような生活をしていたかを復元しました。このような研究は、他の惑星に生命の痕跡を発見するのに役立つと思われます。
ロドプシンは、太陽光をエネルギーに変換する能力をもつタンパク質で、そのエネルギーを使って細胞内のプロセスを活性化させることができます。
ロドプシンは、人間の目の杆体や錐体と関係があり、明暗を区別したり色を見たりすることができる。また、現代の生物や、鮮やかな虹色を呈する塩田などの環境にも広く分布している。
研究チームは、機械学習を用いて世界中のロドプシンタンパク質の配列を解析し、それらが時間とともにどのように進化してきたかを追跡した。そして、一種の家系図を作成し、25億年から40億年前のロドプシンや、ロドプシンが直面していたと思われる条件を復元することに成功したのです。

<関連情報>

太古の微生物ロドプシンが示す最古の光帯ニッチ Earliest Photic Zone Niches Probed by Ancestral Microbial Rhodopsins

Cathryn D. Sephus, Evrim Fer, Amanda K. Garcia, Zachary R. Adam, Edward W. Schwieterman, Betul Kacar
Molecular Biologyand Evolution  Published::07 May 2022
DOI:https://doi.org/10.1093/molbev/msac100

Evolution of spectral tuning mapped to a maximum likelihood phylogeny of microbial type 1 rhodopsin protein sequences. Nodes are colored according to the predicted maximum absorption wavelength (λmax) of the associated maximum likelihood (ML) ancestral sequence (color scale shown in plot, top left). Boxplot shows the predicted λmax distribution among alternate ancestral sequences for nodes Anc1–Anc5 (n = 50 per node; see Materials and Methods and fig. 2b, c). Branch support values are derived from 100 bootstrap replicates. Branch scale indicates 1.0 amino acid substitutions per site. Heliorhodopsin outgroup clade is collapsed. BR, bacteriorhodopsin; HR, halorhodopsin; SR II, sensory rhodopsin II; SR I, sensory rhodopsin I; PR, proteorhodopsin; XR, xanthorhodopsin; HeR, heliorhodopsin.

Abstract

For billions of years, life has continuously adapted to dynamic physical conditions near the Earth’s surface. Fossils and other preserved biosignatures in the paleontological record are the most direct evidence for reconstructing the broad historical contours of this adaptive interplay. However, biosignatures dating to Earth’s earliest history are exceedingly rare. Here, we combine phylogenetic inference of primordial rhodopsin proteins with modeled spectral features of the Precambrian Earth environment to reconstruct the paleobiological history of this essential family of photoactive transmembrane proteins. Our results suggest that ancestral microbial rhodopsins likely acted as light-driven proton pumps and were spectrally tuned toward the absorption of green light, which would have enabled their hosts to occupy depths in a water column or biofilm where UV wavelengths were attenuated. Subsequent diversification of rhodopsin functions and peak absorption frequencies was enabled by the expansion of surface ecological niches induced by the accumulation of atmospheric oxygen. Inferred ancestors retain distinct associations between extant functions and peak absorption frequencies. Our findings suggest that novel information encoded by biomolecules can be used as “paleosensors” for conditions of ancient, inhabited niches of host organisms not represented elsewhere in the paleontological record. The coupling of functional diversification and spectral tuning of this taxonomically diverse protein family underscores the utility of rhodopsins as universal testbeds for inferring remotely detectable biosignatures on inhabited planetary bodies.

ad

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました