脳の未知の運動モジュールを解明 (Unraveling the brain’s hidden motor modules)

ad

2025-03-05 スイス連邦工科大学ローザンヌ校 (EPFL)

スイス連邦工科大学ローザンヌ校(EPFL)の研究者たちは、幾何学的深層学習法を開発し、複数の被験者や条件下での認知および運動課題中の神経集団活動を統合的に解析することに成功しました。この手法は、神経活動の時空間的パターンを高精度で解読し、脳内の隠れた運動モジュールの理解を深めることが期待されています。

<関連情報>

マウス大脳新皮質における細胞クラス特異的な口腔運動地図 Cell-class-specific orofacial motor maps in mouse neocortex

Keita Tamura∙ Pol Bech∙ Hidenobu Mizuno∙ Léa Veaute∙ Sylvain Crochet ∙ Carl C.H. Petersen
Current Biology  Published:February 26, 2025
DOI:https://doi.org/10.1016/j.cub.2025.01.056

Graphical abstract

脳の未知の運動モジュールを解明 (Unraveling the brain’s hidden motor modules)

Highlights

•Cortical motor maps can be decomposed into genetically defined cell-class modules
•Modules for jaw opening are segregated into sensory, motor, and premotor cortices
•Combined imaging and stimulation reveal convergent excitation of the motor cortex
•Motor skill learning is accompanied by module-specific plasticity of motor maps

Summary

Cortical motor maps represent fundamental organizing principles for voluntary motor control,1 yet their underlying structure remains poorly understood, including regions of sensory2,3 and parietal cortex,4 as well as the classical frontal motor cortex. To understand how anatomically distinct cortical areas are organized into functional units for controlling movements, here, we refined cortical motor maps by selectively stimulating genetically defined subpopulations of excitatory neurons. Surprisingly, we found spatially segregated modules in orofacial motor maps by optogenetically stimulating different classes of cortical excitatory neurons. The overall motor map for jaw opening revealed by stimulating all classes of excitatory neurons spanned the anterior lateral cortex broadly. By contrast, the jaw-opening motor maps of specific genetically defined cell classes were focalized either in primary motor, secondary motor, or primary somatosensory areas within the overall jaw-opening motor map of all excitatory neurons, demonstrating cell-class-specific motor map modules. Simultaneous wide-field calcium imaging revealed activity propagation from optically stimulated motor map modules to the primary motor area correlating with movement vigor. The motor map modules were largely stable across lick motor learning with important exceptions indicating cell-class-specific expansion into other module zones. Our data suggest that distinct cell-class-specific modules interacting across sensorimotor cortices might contribute to controlling orofacial movement.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました