中国の科学者、葉緑体のエネルギー伝達メカニズムと進化を解明(Chinese Scientists Explain Energy Transfer Mechanism in Chloroplasts and Its Evolution)

ad

2025-03-13 中国科学院(CAS)

中国科学院分子植物科学卓越革新センターの研究チームは、葉緑体のATP/ADPトランスロケーター(NTTタンパク質)の構造と機能を解明しました。シロイヌナズナと肺炎クラミジアのNTT構造解析により、葉緑体のNTTがクラミジア様の祖先から水平遺伝子移行で獲得された可能性を示唆。NTTは12本の膜貫通ヘリックスを持ち、ATP/ADPの結合部位の詳細な特性が明らかになりました。この研究は葉緑体の進化理解を深めるだけでなく、作物改良や寄生病原体の新規治療法開発にも貢献する可能性があります。

<関連情報>

プラスミド/寄生体ATP/ADPトランスロケーターの構造とメカニズム Structure and mechanism of the plastid/parasite ATP/ADP translocator

Huajian Lin,Jian Huang,Tianming Li,Wenjuan Li,Yutong Wu,Tianjiao Yang,Yuwei Nian,Xiang Lin,Jiangqin Wang,Ruiying Wang,Xiaohui Zhao,Nannan Su,Jinru Zhang,Xudong Wu & Minrui Fan
Nature  Published:12 March 2025
DOI:https://doi.org/10.1038/s41586-025-08743-3

中国の科学者、葉緑体のエネルギー伝達メカニズムと進化を解明(Chinese Scientists Explain Energy Transfer Mechanism in Chloroplasts and Its Evolution)

Abstract

Adenosine triphosphate (ATP) is the principal energy currency of all living cells. Metabolically impaired obligate intracellular parasites, such as the human pathogens Chlamydia trachomatis and Rickettsia prowazekii, can acquire ATP from their host cells through a unique ATP/adenosine diphosphate (ADP) translocator, which mediates the import of ATP into and the export of ADP and phosphate out of the parasite cells, thus allowing the exploitation of the energy reserves of host cells (also known as energy parasitism). This type of ATP/ADP translocator also exists in the obligate intracellular endosymbionts of protists and the plastids of plants and algae and has been implicated to play an important role in endosymbiosis. The plastid/parasite type of ATP/ADP translocator is phylogenetically and functionally distinct from the mitochondrial ATP/ADP translocator, and its structure and transport mechanism are still unknown. Here we report the cryo-electron microscopy structures of two plastid/parasite types of ATP/ADP translocators in the apo and substrate-bound states. The ATP/ADP-binding pocket is located at the interface between the N and C domains of the translocator, and a conserved asparagine residue within the pocket is critical for substrate specificity. The translocator operates through a rocker-switch alternating access mechanism involving the relative rotation of the two domains as rigid bodies. Our results provide critical insights for understanding ATP translocation across membranes in energy parasitism and endosymbiosis and offer a structural basis for developing drugs against obligate intracellular parasites.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました