遊泳バクテリアの群れ運動がカオス的流動に至る道筋を解明 ~集団運動の制御でアクティブ流体デバイスなどの設計に貢献~

ad

2025-03-18 東京科学大学

東京科学大学の西口大貴准教授らの研究チームは、高密度の遊泳バクテリア集団が乱流状態に至る過程で、渦の回転方向の反転や振動状態が最初に現れることを発見しました。 異なる半径の円形領域内にバクテリア集団を閉じ込めて観察した結果、半径が大きくなるにつれて、定常な渦が不安定化し、最終的に時空間的に乱れた乱流状態に至ることが明らかになりました。この研究は、アクティブマターの集団運動の普遍的な制御理論として、アクティブ流体デバイスやバイオセンサーなどの設計指針に貢献することが期待されます。

<関連情報>

渦の反転はバクテリアの閉じ込め乱流の前兆である Vortex reversal is a precursor of confined bacterial turbulence

Daiki Nishiguchi, Sora Shiratani, Kazumasa A. Takeuchi, and Igor S. Aranson
Proceedings of the National Academy of Sciences  Published:March 14, 2025
DOI:https://doi.org/10.1073/pnas.2414446122

遊泳バクテリアの群れ運動がカオス的流動に至る道筋を解明 ~集団運動の制御でアクティブ流体デバイスなどの設計に貢献~

Significance

Biological and synthetic self-propelled entities, such as cultured cells, swimming bacteria, and active colloids, often exhibit complex collective motion. Controlling and rectifying such motion is crucial for developing microscopic active devices and sensors composed of swarming self-propelled particles. This study reveals how geometrical confinement transforms chaotic motion into a stabilized vortex and converts it into unsteady reversing configurations. The underlying mechanism is generic and thus applicable to various active systems. This work paves the way for design strategies for active devices grounded in robust theoretical insights.

Abstract

Active turbulence, or chaotic self-organized collective motion, is often observed in concentrated suspensions of motile bacteria and other systems of self-propelled interacting agents. To date, there is no fundamental understanding of how geometrical confinement orchestrates active turbulence and alters its physical properties. Here, by combining large-scale experiments, computer modeling, and analytical theory, we have identified a generic sequence of transitions occurring in bacterial suspensions confined in cylindrical wells of varying radii. With increasing the well’s radius, we observed that persistent vortex motion gives way to periodic vortex reversals, four-vortex pulsations, and then well-developed active turbulence. Using computational modeling and analytical theory, we have shown that vortex reversal results from the nonlinear interaction of the first three azimuthal modes that become unstable with the radius increase. The analytical results account for our key experimental findings. To further validate our approach, we reconstructed equations of motion from experimental data. Our findings shed light on the universal properties of confined bacterial active matter and can be applied to various biological and synthetic active systems.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました