酸化鉄を作るたんぱく質を真核生物で初めて発見~ヒザラガイの「磁鉄鉱の歯」形成の謎を解く~

ad

2025-08-08 岡山大学,科学技術振興機構

岡山大学らの研究チームは、軟体動物ヒザラガイの歯に含まれる磁鉄鉱形成を誘導する新規タンパク質「RTMP1」を発見し、真核生物による酸化鉄生成の仕組みを世界で初めて解明した。RTMP1はキチン繊維に結合し、その上で酸化鉄を形成させる働きを持つ。ヒザラガイの磁鉄鉱歯は極めて高い耐摩耗性を誇り、環境に優しい磁鉄鉱合成技術や高強度材料開発、鉄関連疾患研究への応用が期待される。本成果は2025年8月8日付「Science」に掲載された。

酸化鉄を作るたんぱく質を真核生物で初めて発見~ヒザラガイの「磁鉄鉱の歯」形成の謎を解く~
図1. 瀬戸内海のヒザラガイ(左)とその歯(右)

<関連情報>

歯根基質タンパク質1はヒザラガイの歯における酸化鉄の沈着を誘導する Radular teeth matrix protein 1 directs iron oxide deposition in chiton teeth

Michiko Nemoto, Koki Okada, Haruka Akamine, Yuki Odagaki, […] , and Akira Satoh
Science  Published:7 Aug 2025
DOI:https://doi.org/10.1126/science.adu0043

Editor’s summary

The major lateral radula teeth of chitons are formed from magnetite and other biominerals in a way that makes them very hard and wear resistant. As the cusps wear out, they are replaced by newly formed teeth from behind. Nemoto et al. expanded on prior studies of these organisms by exploring the molecular mechanism of magnetite biomineralization (see the Perspective by Scheffel). The authors demonstrate that one protein, which they call radular teeth matrix protein 1 (RTMP1), controls iron oxide deposition and differs from other magnetite-precipitating proteins found in magnetotactic bacteria. —Marc S. Lavine

Abstract

Nature builds multiscale mineral structures with impressive mechanical properties through spatially and temporally orchestrated organic-mineral assembly. One example of regulated mineralization is found in hypermineralized and ultrahard magnetic teeth of chiton, which grind on rock to feed on algae. At early stages of tooth formation, iron oxide deposition is controlled using a chiton-specific radular teeth matrix protein 1 (RTMP1), which is transported into teeth through microvilli. RTMP1 spatially and temporally guides and enhances mineralization on chitinous fibers within the tooth, providing a hard, tough, and strong architecture that enables the organism to perform repetitive abrasive events to survive.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました