脊髄損傷回復に希望をもたらす3Dプリント足場(Breakthrough in 3D-printed scaffolds offers hope for spinal cord injury recovery)

ad

2025-08-22 ミネソタ大学

ミネソタ大学の研究チームは、3Dプリント技術と幹細胞生物学を組み合わせ、脊髄損傷の回復を促す新手法を開発した。研究では微細な通路を備えたスキャフォールドを3D印刷し、ヒト多能性幹細胞から誘導した脊髄神経前駆細胞(sNPCs)を配置。この構造により神経線維の成長方向を制御し、生体に近い環境を再現できる。ラットの完全切断脊髄に移植すると、sNPCsは成熟してニューロンに分化し、頭側・尾側の双方へ軸索を伸ばして既存の神経回路と連結、時間とともに宿主組織と統合された。12週間後には顕著な機能回復が確認され、移植細胞の多くがニューロンへ分化していた。研究者らはこれを「リレー中継システム」として捉え、神経回路を橋渡しする役割を果たす可能性を強調した。本成果は、sNPC、オルガノイド組立、3Dプリンティングを統合した初の治療アプローチであり、脊髄損傷患者への再生医療応用に向けた重要な一歩とされる。

脊髄損傷回復に希望をもたらす3Dプリント足場(Breakthrough in 3D-printed scaffolds offers hope for spinal cord injury recovery)
New research combines 3D printing, stem cell biology, and lab-grown tissues for possible treatments of spinal cord injuries. Photo provided by: McAlpine Research Group, University of Minnesota

<関連情報>

3Dプリントされた足場は脊髄損傷に使用するための強化された脊髄オルガノイドの形成を促進する 3D-Printed Scaffolds Promote Enhanced Spinal Organoid Formation for Use in Spinal Cord Injury Advanced Healthcare Materials  Published: 23 July 2025 DOI:https://doi.org/10.1002/adhm.202404817

Abstract

The transplantation of regionally specific spinal neural progenitor cells (sNPCs) has shown promise for functional restoration after spinal cord injury (SCI) by forming connections with host neural circuits. Here, 3D-printed organoid scaffolds for transplantation using clinically relevant human induced pluripotent stem cell-derived regionally specific sNPCs is developed. Scaffolds with microscale channels are printed, and sNPCs are subsequently printed within these channels. The scaffolds direct axonal projections along the channels and guide the cells to simulate in vivo-like conditions, leading to more effective cell maturation and the development of neuronal networks crucial for restoring function after SCI. The scaffolds, with organoids assembled along their lengths, are transplanted into the transected spinal cords of rats. This significantly promotes the functional recovery of the rats. At 12 weeks post-transplantation, the majority of the cells in the scaffolds differentiate into neurons and integrate into the host spinal cord tissue. These results demonstrate their potential to create a relay system along the spinal cord and form synapses in both the rostral and caudal directions relative to the scaffold. It is envisioned that combining sNPCs, organoid assembly, and 3D printing strategies can ultimately lead to a transformative treatment approach for SCI.

Graphical Abstract

3D-printed organoid scaffolds with microscale channels are developed to enhance spinal cord injury recovery by guiding region-specific spinal neural progenitor cells. These scaffolds promote axonal growth, cell maturation, and neuronal network formation. When transplanted into rat spinal cords, they significantly improve functional recovery, showing promise for treating spinal cord injuries by creating a relay system.

Description unavailable

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました