細胞の“利き手”を決定する新原理を発見~生物の左右非対称性を解明する手掛かりに~

ad

2025-08-26 理化学研究所

理化学研究所の研究グループは、体や器官の左右非対称性の基盤とされる「細胞キラリティ(細胞の利き手)」を決定する新しい原理を発見しました。ヒト大腸がん由来のCaco-2細胞を用いた研究で、細胞核が時計回りに回転する現象を観察し、その駆動力がアクチンとミオシンIIから構成される「アクトミオシンリング」によることを突き止めました。特に、この同心円構造は一見キラル性を持たないにもかかわらず、分子のキラリティに基づき細胞スケールの回転流を生み出すことが理論と実験で確認されました。本成果は、分子レベルから細胞レベル、さらに器官スケールの非対称性形成に至る階層的な理解を深める基盤となり、生命の形づくりの仕組み解明に大きく貢献すると期待されます。

細胞の“利き手”を決定する新原理を発見~生物の左右非対称性を解明する手掛かりに~
細胞キラリティを駆動するアクトミオシンリング

<関連情報>

アクチノミオシン細胞骨格の動的同心円パターンを介した上皮細胞のキラル性の出現 Epithelial cell chirality emerges through the dynamic concentric pattern of actomyosin cytoskeleton

Takaki Yamamoto,Tomoki Ishibashi,Yuko Mimori-Kiyosue,Sylvain Hiver,Naoko Tokushige,Mitsusuke Tarama,Masatoshi Takeichi,Tatsuo Shibata
eLife  Published:Jul 8, 2025
DOI:https://doi.org/10.7554/eLife.102296

Abstract

The chirality of tissues and organs is essential for their proper function and development. Tissue-level chirality derives from the chirality of individual cells that comprise the tissue, and cellular chirality is considered to emerge through the organization of chiral molecules within the cell. However, the principle of how molecular chirality leads to cellular chirality remains unresolved. To address this fundamental question, we experimentally studied the chiral behaviors of isolated epithelial cells derived from a carcinoma line and developed a theoretical understanding of how their behaviors arise from molecular-level chirality. We first found that the nucleus undergoes clockwise rotation, accompanied by robust cytoplasmic circulation in the same direction. During the rotation, actin and Myosin IIA assemble into the stress fibers with a vortex-like chiral orientation at the ventral side of the cell periphery, concurrently forming a concentric pattern at the dorsal side. Further analysis revealed that the intracellular rotation is driven by the concentric actomyosin filaments located dorsally, not by the ventral vortex-like chiral stress fibers. To elucidate how these concentric actomyosin filaments induce chiral rotation, we analyzed a theoretical model developed based on the theory of active chiral fluid. This model demonstrated that the observed cell-scale unidirectional rotation is driven by the molecular-scale chirality of actomyosin filaments even in the absence of cell-scale chiral orientational order. Our study thus provides novel mechanistic insights into how the molecular chirality is organized into the cellular chirality, representing an important step toward understanding left–right symmetry breaking in tissues and organs.

Editor’s evaluation

Although the actomyosin cytoskeleton has been shown to play an important role, the principles by which molecular chirality leads to the chirality of cells, tissues, and organs remain largely unexplored. This important study reveals that the concentric actomyosin network at the apical side of Caco-2 cells, rather than the ventral chiral stress fibers, drives the rotational movement of the nucleus and cytoplasmic flow in the same direction. The convincing data are supported by a theoretical model based on the theory of active fluids, which explains how unidirectional rotation at the cellular scale can arise from the chirality of actomyosin filaments at the molecular scale, even in the absence of chiral orientational order at the cellular scale.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました