手術後の合併症予測において、AI は医師よりも優れた能力を発揮(AI fares better than doctors at predicting deadly complications after surgery)

ad

2025-09-17 ジョンズ・ホプキンス大学 (JHU)

ジョンズ・ホプキンス大学の研究チームは、日常的に行われる心電図(ECG)検査から外科手術後の致死的合併症を予測するAIモデルを開発した。従来の医師が用いるリスクスコアの予測精度は約60%にとどまるが、AIはより高精度に危険患者を識別できた。ECGは心疾患だけでなく炎症、代謝、電解質バランスなど全身の状態を反映しており、AIがその微細な信号を読み取ることで予測性能が向上する。標準的かつ低コストの検査を活用できるため、患者と外科医双方にとって意思決定を大きく変える可能性がある。本成果はBritish Journal of Anaesthesiaに発表された。

手術後の合併症予測において、AI は医師よりも優れた能力を発揮(AI fares better than doctors at predicting deadly complications after surgery)
Stevens’ team used artificial intelligence to extract previously undetected signals in these routine heart tests that strongly predict which patients will suffer potentially deadly complications after surgery. Image credit: Will Kirk / Johns Hopkins University

<関連情報>

12 誘導心電図を用いた非心臓手術における主要な心血管イベントの手術前リスク予測:説明可能な深層学習アプローチ Preoperative risk prediction of major cardiovascular events in noncardiac surgery using the 12-lead electrocardiogram: an explainable deep learning approach

Carl Harris, Anway Pimpalkar, Ataes Aggarwal, Jiyuan Yang, Xiaojian Chen, Samuel Schmidgall, Sampath Rapuri, Joseph L. Greenstein, Casey O. Taylor, Robert D. Stevens
British Journal of Anaesthesia  Available online 17 September 2025
DOI:https://doi.org/10.1016/j.bja.2025.07.085

Abstract

Background

The Revised Cardiac Risk Index (RCRI) only modestly predicts major adverse cardiovascular events after noncardiac surgery. We investigated whether preoperative 12-lead ECGs analysed with deep learning could improve risk prediction.

Methods

In a retrospective cohort of 37 081 adults undergoing major noncardiac surgery (2008–2019, MIMIC-IV database), convolutional neural networks were trained to predict in-hospital myocardial infarction, in-hospital mortality, and a composite of in-hospital myocardial infarction, in-hospital stroke, and 30-day mortality. Models using ECG waveforms alone were compared with fusion models that combined ECGs with 34 routinely collected clinical variables. The primary outcome was discrimination, assessed by the area under the receiver-operating characteristic curve (AUROC) with 10-fold cross-validation and permutation tests vs the RCRI. A generative counterfactual framework provided waveform-level explanations.

Results

The fusion model yielded an AUROC=0.858 (95% confidence interval [95% CI], 0.845–0.872) for myocardial infarction, AUROC=0.899 (95% CI, 0.889–0.908) for in-hospital mortality, and AUROC=0.835 (95% CI, 0.827–0.843) for the composite outcome. Fusion model AUROC values exceeded those of ECG-only models (P≤0.002) and the RCRI (myocardial infarction: P=0.001; composite: P<0.001). Counterfactual analysis highlighted prolonged QRS duration, low-voltage complexes, and ST-segment depression as electrophysiologic patterns that consistently correlated with higher predicted risk.

Conclusions

A multimodal deep-learning model that integrates preoperative ECG waveforms with routinely collected clinical data improves prediction of major adverse cardiovascular events, compared with the Revised Cardiac Risk Index. This fully automated approach provides explainable, patient-specific insights, and may improve perioperative risk stratification.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました