無線通信が可能な脊椎インプラントを開発(Wireless Metamaterial Spinal Implants That Feel, Heal, and Communicate)

ad

2025-10-27 ピッツバーグ大学

ピッツバーグ大学のAmir Alavi准教授とNitin Agarwal准教授らは、自律発電・ワイヤレス通信機能を備えたメタマテリアル脊椎インプラントを開発した。従来の脊椎固定術では回復経過をX線などで確認する必要があるが、この新技術ではバッテリーも電子回路も不要で、圧力に応じて発電し信号を送信できる「自己感知型ケージ」が脊椎の癒合状態をリアルタイム監視する。構造は導電性と非導電性素材を交互に組み合わせた複合メタマテリアルで、接触帯電によるナノ発電を利用。AIを用いて患者ごとに最適な形状を自動設計・3Dプリントし、信号は背部電極を経由してクラウドへ送信される。これにより医師は遠隔から治癒進行や異常を検知でき、電気刺激治療への応用も視野に入る。米国国立衛生研究所(NIH)のR21助成を受け、今後動物実験を経て臨床試験を予定。

<関連情報>

ワイヤレスで電子機器を必要としない機械式メタマテリアルインプラント Wireless electronic-free mechanical metamaterial implants

Jianzhe Luo, Wenyun Lu, Pengcheng Jiao, Daeik Jang, Kaveh Barri, Jiajun Wang, Wenxuan Meng, Rohit Prem Kumar, Nitin Agarwal, D. Kojo Hamilton, Zhong Lin Wang, Amir H. Alavi
Materials Today  Available online: 9 January 2025
DOI:https://doi.org/10.1016/j.mattod.2024.12.018

Graphical abstract

無線通信が可能な脊椎インプラントを開発(Wireless Metamaterial Spinal Implants That Feel, Heal, and Communicate)

Abstract

Wireless force sensing in smart implants enables real-time monitoring of mechanical forces and facilitates dynamic adjustments to optimize implant functionality in-situ. This capability enhances the precision of diagnostics and treatment, leading to superior surgical outcomes. Despite significant advancements in wireless smart implants over the last two decades, current implantable devices still operate passively and require additional electronic modules for wireless transmission of stored biological data. To address these challenges, we propose an innovative wireless force sensing paradigm for implantable systems through the integration of mechanical metamaterials and nano energy harvesting technologies. We demonstrate composite mechanical metamaterial implants capable of serving as all-in-one wireless force sensing units, incorporating functions for power generation, sensing and transmission with ultra-low power requirements. In this alternative communication approach, the electrical signals harvested by the implants from mechanical stimuli are utilized directly for the wireless transmission of the sensed data. We conduct experimental and theoretical studies to demonstrate the wireless detection of the generated strain-induced polarization electric field using electrodes. The feasibility of the proposed wireless force sensing approach is evaluated through a proof-of-concept orthopedic implant in the form of a total knee replacement. The findings indicate that the created wireless, electronic-free metamaterial implants with a power output as low as 0.1 picowatts enable direct, self-powered wireless communication during force sensing across air, simulated body fluid and animal tissue. We validate the functionality of the proposed implants through a series of experiments conducted on an ex vivo human cadaver knee specimen. Furthermore, the effect of electrode size and placement on the strength of the received signals is examined. Finally, we highlight the potential of our approach to create a diverse array of mechanically-tunable implants capable of precise force measurements and wireless real-time data transmission, all without relying on any external antennas, power sources, or telemetry systems.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました