細胞接着面で互いの収縮力を感知し力学的情報を伝達する仕組みの解明~神経管閉鎖障害など上皮細胞シートの収縮異常による病態の理解に繋がる知見~

ad

2025-10-29 九州大学

九州大学大学院医学研究院の池ノ内順一教授、松沢健司講師らの研究グループは、上皮細胞が互いの収縮力を感知し、力学的情報を伝達する仕組みを解明した。上皮細胞は互いに引っ張り合う張力のバランスを保つことでシート構造の安定性を維持しているが、その力をどのように感知・制御しているかは不明だった。研究チームは、細胞接着部に存在するタンパク質「Homer」が機械的張力を感知し、局所的なカルシウムシグナルを誘発してアクトミオシン線維の収縮力を制御することを発見した。Homerを欠損させるとカルシウム応答が低下し、アクチン集積と細胞間張力が減少、神経管閉鎖が失敗することが明らかとなった。これにより、Homerを介して物理的刺激が細胞内信号へと変換され、組織全体の形態形成を調整する新たなメカノセンシング機構が示された。本成果は、発生過程や上皮組織の修復異常の理解に重要な手掛かりを与えるものであり、神経管閉鎖障害などの病態解明や再生医療への応用が期待される。研究成果は2025年10月24日付で米国科学アカデミー紀要(PNAS)に掲載された。

細胞接着面で互いの収縮力を感知し力学的情報を伝達する仕組みの解明~神経管閉鎖障害など上皮細胞シートの収縮異常による病態の理解に繋がる知見~
図 Homerを欠損した上皮細胞は、収縮力が弱まり、 平べったい形になる

<関連情報>

カルシウム依存性アクチンの定常プールはホーマーによって維持され、上皮の機械感覚を制御する A steady-state pool of calcium-dependent actin is maintained by Homer and controls epithelial mechanosensation

Kenji Matsuzawa, Makoto Suzuki, Yuma Cho, +1 , and Junichi Ikenouchi
Proceedings of the National Academy of Sciences  Published:October 24, 2025
DOI:https://doi.org/10.1073/pnas.2509784122

Significance

This study uncovers a mechanism by which localized calcium dynamics at the apical junctional complex (AJC) maintain an adaptive, tension sensitive pool of actin, regulated by the epithelial polarity scaffolds Homer and MUPP1/PatJ. Importantly, this mechanism operates without perturbing epithelial polarity, indicating a specific means to modulate tissue mechanics. By linking mechanical forces to localized calcium amplification, this module enables precise mechanosensation, coordinating collective behaviors such as epithelial wound healing and neural tube closure in Xenopus. These findings redefine our understanding of intercellular tension sensing in epithelial tissues and highlight the Homer–calcium signaling axis as a key driver of tissue morphogenesis and homeostasis, with far reaching implications for developmental biology, regenerative medicine, and neural tube defect pathogenesis.

Abstract

Epithelial cells are inherently contractile and in homeostasis, tissue integrity is maintained by balancing the uneven contractile forces in neighboring cells at the cell–cell interface. By contrast, epithelial cells can utilize an imbalance in contractile force to communicate various information to induce tissue-wide response as in wound healing. Contractility is generated and processed at the apical junctional complex (AJC) by the dynamic behavior of the actin cytoskeleton. Calcium signaling can pattern cellular responses based on its reach and amplitude and the actin cytoskeleton is supported by its wide ranging effects on actin regulators. Calcium transients regulate various cell behaviors associated with actin remodeling, such as in damage response and developmental morphogenesis. Here, we report that calcium maintains an adaptive pool of AJC-associated actin that is sensitive to tension and encoded by calcium dynamics. For this, the recently identified epithelial polarity module Homer-MUPP1/PatJ is required. Homer regulates calcium signaling in various tissue contexts through interaction with numerous components of the endoplasmic reticulum (ER) and plasma membrane (PM) calcium signal toolkit. Knockout of either Homer or MUPP1/PatJ attenuated tension-induced calcium response and severely disrupted wound healing migration, which is dependent on guidance input through AJC tension. We also show that Homer is integral to early embryonic neurodevelopment as its suppression causes failure of neural tube closure. Our findings highlight the critical role of localized calcium dynamics on AJC actin remodeling and cellular behavior, elucidating the means of tissue coordination through intercellular tension.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました