胚発生初期段階における非対称性の形成を発見(The Earliest Stage of Embryos Show Specialized Asymmetry)

ad

2025-12-03 カリフォルニア工科大学(Caltech)

Caltech の研究チームは、受精後わずか数時間という最も初期の段階の胚で、細胞がすでに「左右非対称性(アシンメトリー)」を示すことを発見した。従来、体の左右差を決定する仕組みは発生が進んだ後に現れると考えられてきたが、本研究では、胚を構成する細胞が初期から異なる分子特性と配置を持ち、将来の体軸形成に影響する“前駆的左右差”が存在することが明らかになった。研究は高解像度イメージングと分子解析を組み合わせ、細胞骨格の構造やタンパク質分布の違いが、胚の幾何学的配置と連動して早期に組み込まれる過程を捉えた。この成果は、発生生物学の基本概念を塗り替えるものであり、先天性疾患の解明や人工胚モデルの設計にも新たな指針を与える可能性がある。

<関連情報>

受精は哺乳類の胚における初期のプロテオーム対称性の破壊を引き起こす Fertilization triggers early proteomic symmetry breaking in mammalian embryos

Lisa K. Iwamoto-Stohl ∙ Aleksandra A. Petelski ∙ Baiyi Quan ∙ … ∙ Tsui-Fen Chou, ∙ Nikolai Slavov ∙ Magdalena Zernicka-Goetz
Cell  Published:December 3, 2025
DOI:https://doi.org/10.1016/j.cell.2025.11.006

Graphical abstract

胚発生初期段階における非対称性の形成を発見(The Earliest Stage of Embryos Show Specialized Asymmetry)

Highlights

  • Proteomic asymmetries emerge at the zygote stage and are triggered by fertilization
  • 2-cell-stage blastomeres cluster into alpha and beta states with unique profiles
  • Beta blastomeres show greater developmental potential than alpha blastomeres
  • Early asymmetries are conserved in human embryos

Summary

While non-mammalian embryos often rely on spatial pre-patterning, mammalian development has long been thought to begin with equivalent blastomeres. However, emerging evidence challenges this. Here, using multiplexed and label-free single-cell proteomics, we identify over 300 asymmetrically abundant proteins—many involved in protein degradation and transport—dividing mouse 2-cell-stage blastomeres into two distinct clusters, which we term alpha and beta. These proteomic asymmetries are detectable as early as the zygote stage, intensify by the 4-cell stage, and correlate with the sperm entry site, implicating fertilization as a symmetry-breaking event. Splitting 2-cell-stage embryos into halves reveals that beta blastomeres possess greater developmental potential than alpha blastomeres. Similar clustering and protein enrichment patterns found in human 2-cell embryos suggest this early asymmetry might be conserved. These findings uncover a previously unrecognized proteomic pre-patterning triggered by fertilization in mammalian embryos, with important implications for understanding totipotency and early lineage bias.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました