睡眠不足を特定する血液ベースのマーカーが開発される(Blood-based marker developed to identify sleep deprivation)

ad

2024-03-11 バーミンガム大学

新しい研究では、血液中のマーカーの組み合わせを使用した生体マーカーが、実験室での条件下で24時間以上起きていた人を正確に予測することができることが示された。この生体マーカーは、個人が24時間以上起きていたかどうかを99.2%の確率で検出し、非常に高い精度を示した。この発見は、睡眠不足が交通事故などにつながるリスクを簡単に特定するためのテストの開発に役立つ可能性があり、睡眠不足が原因で起こる重大な事故を予防するための戦略を開発する上で重要な役割を果たすかもしれない。

<関連情報>

メタボロームバイオマーカーを用いた急性睡眠不足の正確な検出-機械学習によるアプローチ Accurate detection of acute sleep deprivation using a metabolomic biomarker—A machine learning approach

KATHERINE JEPPE , SUZANNE FTOUNI , BRUNDA NIJAGAL , LEILAH K. GRANT , […], AND CLARE ANDERSON
Science Advances  Published:8 Mar 2024
DOI:https://doi.org/10.1126/sciadv.adj6834

睡眠不足を特定する血液ベースのマーカーが開発される(Blood-based marker developed to identify sleep deprivation)

Abstract

Sleep deprivation enhances risk for serious injury and fatality on the roads and in workplaces. To facilitate future management of these risks through advanced detection, we developed and validated a metabolomic biomarker of sleep deprivation in healthy, young participants, across three experiments. Bi-hourly plasma samples from 2 × 40-hour extended wake protocols (for train/test models) and 1 × 40-hour protocol with an 8-hour overnight sleep interval were analyzed by untargeted liquid chromatography–mass spectrometry. Using a knowledge-based machine learning approach, five consistently important variables were used to build predictive models. Sleep deprivation (24 to 38 hours awake) was predicted accurately in classification models [versus well-rested (0 to 16 hours)] (accuracy = 94.7%/AUC 99.2%, 79.3%/AUC 89.1%) and to a lesser extent in regression (R2 = 86.1 and 47.8%) models for within- and between-participant models, respectively. Metabolites were identified for replicability/future deployment. This approach for detecting acute sleep deprivation offers potential to reduce accidents through “fitness for duty” or “post-accident analysis” assessments.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました