2024-03-12 カリフォルニア大学サンディエゴ校(UCSD)
◆彼らは、これらのイソギンチャクの色の多様性が、一つの蛍光タンパク質遺伝子の異なるバージョンによって制御されていることを発見しました。また、この蛍光タンパク質が強力な抗酸化物質として機能し、細胞を酸化ストレスから守ることも明らかになりました。これらの発見は、海洋生物が環境の挑戦に適応するための洗練された方法を示しており、市民科学の重要性を強調しています。
<関連情報>
- https://today.ucsd.edu/story/study-illuminates-the-protective-role-of-fluorescence-in-neon-colored-sea-anemones
- https://www.pnas.org/doi/10.1073/pnas.2317017121
蛍光タンパク質は遺伝的色彩多型を生成し、潮間帯のイソギンチャクにおける酸化ストレスに対抗する Fluorescent proteins generate a genetic color polymorphism and counteract oxidative stress in intertidal sea anemones
D. Nathaniel Clarke, Noah H. Rose, Evelien De Meulenaere, +3, and Dimitri D. Deheyn
Proceedings of the National Academies of Sciences Published:March 8, 2024
DOI:https://doi.org/10.1073/pnas.2317017121
Significance
Fluorescent proteins (FPs) revolutionized molecular biology, yet their natural functions remain largely mysterious. Our study illuminates roles for FPs in sea anemones, demonstrating their ability to control color variations while also protecting against oxidative stress. Remarkably, allelic differences in just one FP gene govern a vibrant color polymorphism. Further, we show how the same FPs shield against oxidative damage, offering a model for FP antioxidant action. Our insights underscore an intriguing evolutionary balance between the chromatic and physiological roles of FPs. This broadens our understanding of animal adaptation to environmental challenges and offers potential refinements in the application of FPs in scientific research.
Abstract
Fluorescent proteins (FPs) are ubiquitous tools in research, yet their endogenous functions in nature are poorly understood. In this work, we describe a combination of functions for FPs in a clade of intertidal sea anemones whose FPs control a genetic color polymorphism together with the ability to combat oxidative stress. Focusing on the underlying genetics of a fluorescent green “Neon” color morph, we show that allelic differences in a single FP gene generate its strong and vibrant color, by increasing both molecular brightness and FP gene expression level. Natural variation in FP sequences also produces differences in antioxidant capacity. We demonstrate that these FPs are strong antioxidants that can protect live cells against oxidative stress. Finally, based on structural modeling of the responsible amino acids, we propose a model for FP antioxidant function that is driven by molecular surface charge. Together, our findings shed light on the multifaceted functions that can co-occur within a single FP and provide a framework for studying the evolution of fluorescence as it balances spectral and physiological functions in nature.