圧力下:クシクラゲはどのように海底の生活に適応してきたか(Under Pressure: How Comb Jellies Have Adapted to Life at the Bottom of the Ocean)

ad

2024-06-27 カリフォルニア大学サンディエゴ校(UCSD)

A collage of different colored and shaped transparent comb jellies against a dark background
A collage featuring five of the comb jelly species studied. Red coloration as seen in the two specimens at right is common among deep-sea animals. (cr: 2021 Jacob Winnikoff)

カリフォルニア大学サンディエゴ校の研究チームは、深海に生息する動物の細胞膜がどのようにして高圧に適応しているかを調査しました。特に「クシクラゲ」と呼ばれる動物の細胞膜にユニークな脂質構造があることを発見しました。これにより、細胞膜が圧力で崩壊しないようになっています。この適応は「ホームカーヴェイチャー」と呼ばれ、深海での高圧によって特定の脂質が円錐形に変形することを意味します。研究は、深海生物の脂質が人間の脳内に豊富に存在するプラスマロゲンと同様であることを示し、プラスマロゲンの役割が脳の健康や病気にどのように関与しているかをさらに調査するための基礎となります。

<関連情報>

深海無脊椎動物における圧力に対するリン脂質のホメオ適応 Homeocurvature adaptation of phospholipids to pressure in deep-sea invertebrates

JACOB R. WINNIKOFF, DANIEL MILSHTEYN, SASIRI J. VARGAS-URBANO, MIGUEL A. PEDRAZA-JOYA, […], AND ITAY BUDIN
Science  Published:27 Jun 2024
DOI:https://doi.org/10.1126/science.adm7607

Editor’s summary

Extreme pressures thousands of feet deep in the ocean are sufficient to compress the conformation of the molecules that form biological membranes. Winnikoff et al. explored how comb jellies have adapted to such pressures. Sampling revealed that jellies from deep environments have abundant phospholipids that show negative curvature at low pressure but allow the formation of functional membranes at high pressure. Increasing the expression of such lipids in the bacteria Escherichia coli was sufficient to enhance pressure tolerance in those cells. —L. Bryan Ray

Abstract

Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals’ depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable. Lipidomics and all-atom simulations identified phospholipids with strong negative spontaneous curvature, including plasmalogens, as a hallmark of deep-adapted membranes that causes this phase behavior. Synthesis of plasmalogens enhanced pressure tolerance in Escherichia coli, whereas low-curvature lipids had the opposite effect. Imaging of ctenophore tissues indicated that the disintegration of deep-sea animals when decompressed could be driven by a phase transition in their phospholipid membranes.

ad
生物化学工学
ad
ad


Follow
ad
タイトルとURLをコピーしました