がん生検の人工知能による精密腫瘍学(Precision Oncology via Artificial Intelligence on Cancer Biopsies)

ad

2024-07-31 カリフォルニア大学サンディエゴ校(UCSD)

カリフォルニア大学サンディエゴ校の研究チームが開発した新世代のAIツール「DeepHRD」は、腫瘍生検スライドから直接、迅速かつ低コストで臨床的に重要なゲノム変異を検出できます。これは従来のゲノム検査の高コストと時間の遅延を解消し、がん治療の精度を向上させることが期待されます。特に、乳がんや卵巣がんの治療で重要なホモログ組換え欠損(HRD)バイオマーカーを特定し、即座に治療を開始できるようにします。AIを用いたこの方法は失敗率がほぼゼロで、従来のゲノム検査よりも信頼性が高く、経済的な負担を軽減します。この研究は、精密医療の普及と平等を促進し、特にリソースの限られた地域でのがん治療に貢献します。

<関連情報>

ディープラーニング人工知能が組織学的スライドから相同組換え欠損とプラチナ製剤反応を予測 Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides

Erik N. Bergstrom, PhD; Ammal Abbasi, BS; Marcos Díaz-Gay, PhD; Loïck Galland, PhD, Sylvain Ladoire, MD; Scott M. Lippman, MD; and Ludmil B. Alexandrov, PhD
Journal of Clinical Oncology  Published:July 31, 2024
DOI:https://doi.org/10.1200/JCO.23.02641

がん生検の人工知能による精密腫瘍学(Precision Oncology via Artificial Intelligence on Cancer Biopsies)

Abstract

Purpose
Cancers with homologous recombination deficiency (HRD) can benefit from platinum salts and poly(ADP-ribose) polymerase inhibitors. Standard diagnostic tests for detecting HRD require molecular profiling, which is not universally available.

Methods
We trained DeepHRD, a deep learning platform for predicting HRD from hematoxylin and eosin (H&E)–stained histopathological slides, using primary breast (n = 1,008) and ovarian (n = 459) cancers from The Cancer Genome Atlas (TCGA). DeepHRD was compared with four standard HRD molecular tests using breast (n = 349) and ovarian (n = 141) cancers from multiple independent data sets, including platinum-treated clinical cohorts with RECIST progression-free survival (PFS), complete response (CR), and overall survival (OS) endpoints.

Results
DeepHRD predicted HRD from held-out H&E-stained breast cancer slides in TCGA with an AUC of 0.81 (95% CI, 0.77 to 0.85). This performance was confirmed in two independent primary breast cancer cohorts (AUC, 0.76 [95% CI, 0.71 to 0.82]). In an external platinum-treated metastatic breast cancer cohort, samples predicted as HRD had higher complete CR (AUC, 0.76 [95% CI, 0.54 to 0.93]) with 3.7-fold increase in median PFS (14.4 v 3.9 months; P = .0019) and hazard ratio (HR) of 0.45 (P = .0047). There were no significant differences in nonplatinum treatment outcome by predicted HRD status in three breast cancer cohorts, including CR (AUC, 0.39) and PFS (HR, 0.98, P = .95) in taxane-treated metastatic breast cancer. Through transfer learning to high-grade serous ovarian cancer, DeepHRD-predicted HRD samples had better OS after first-line (HR, 0.46; P = .030) and neoadjuvant (HR, 0.49; P = .015) platinum therapy in two cohorts.

Conclusion
DeepHRD can predict HRD in breast and ovarian cancers directly from routine H&E slides across multiple external cohorts, slide scanners, and tissue fixation variables. When compared with molecular testing, DeepHRD classified 1.8- to 3.1-fold more patients with HRD, which exhibited better OS in high-grade serous ovarian cancer and platinum-specific PFS in metastatic breast cancer.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました