ナノテクノロジー:貨物機能を持つDNA折り紙(Nanotechnology: DNA origami with cargo function)

ad

2024-09-18 ミュンヘン大学(LMU)

LMUの化学者がDNA折り紙技術を使って、分子輸送と検出機能を持つナノ構造を開発しました。1つ目の研究では、DNA折り紙を利用して脂質小胞を検出し、特定の分子を精密に輸送できるセンサーを作成。これにより、脂質ナノ粒子に分子を正確に搭載する方法が示されました。2つ目の研究では、特定のDNA鎖が結合すると段階的に構造変化するDNA折り紙を開発し、FRET技術で反応過程を追跡。分子の制御放出に新たな可能性を示しています。

<関連情報>

DNA折り紙アレイにおけるアンチジャンクションの制御された機械化学的結合 Controlled mechanochemical coupling of anti-junctions in DNA origami arrays

Fiona Cole,Martina Pfeiffer,Dongfang Wang,Tim Schröder,Yonggang Ke & Philip Tinnefeld
Nature Communications  Published:10 September 2024
DOI:https://doi.org/10.1038/s41467-024-51721-y

ナノテクノロジー:貨物機能を持つDNA折り紙(Nanotechnology: DNA origami with cargo function)

Abstract

Allostery is a hallmark of cellular function and important in every biological system. Still, we are only starting to mimic it in the laboratory. Here, we introduce an approach to study aspects of allostery in artificial systems. We use a DNA origami domino array structure which–upon binding of trigger DNA strands–undergoes a stepwise allosteric conformational change. Using two FRET probes placed at specific positions in the DNA origami, we zoom in into single steps of this reaction cascade. Most of the steps are strongly coupled temporally and occur simultaneously. Introduction of activation energy barriers between different intermediate states alters this coupling and induces a time delay. We then apply these approaches to release a cargo DNA strand at a predefined step in the reaction cascade to demonstrate the applicability of this concept in tunable cascades of mechanochemical coupling with both spatial and temporal control.

DNA折り紙小胞センサーとトリガーによる1分子貨物移動 DNA Origami Vesicle Sensors with Triggered Single-Molecule Cargo Transfer

Ece Büber, Renukka Yaadav, Tim Schröder, Henri G. Franquelim, Philip Tinnefeld
Angewandte Chemie International Edition  Published: 09 September 2024
DOI:https://doi.org/10.1002/anie.202408295

Abstract

Interacting with living systems typically involves the ability to address lipid membranes of cellular systems. The first step of interaction of a nanorobot with a cell will thus be the detection of binding to a lipid membrane. Utilizing DNA origami, we engineered a biosensor with single-molecule Fluorescence Resonance Energy Transfer (smFRET) as transduction mechanism for precise lipid vesicle detection and cargo delivery. The system hinges on a hydrophobic ATTO647N modified single-stranded DNA (ssDNA) leash, protruding from a DNA origami nanostructure. In a vesicle-free environment, the ssDNA coils, ensuring high FRET efficiency. Upon vesicle binding to cholesterol anchors on the DNA origami, hydrophobic ATTO647N induces the ssDNA to stretch towards the lipid bilayer, reducing FRET efficiency. As the next step, the sensing strand serves as molecular cargo that can be transferred to the vesicle through a triggered strand displacement reaction. Depending on the number of cholesterols on the displacer strands, we either induce a diffusive release of the fluorescent load towards neighboring vesicles or a stoichiometric release of a single cargo-unit to the vesicle on the nanosensor. Ultimately, our multi-functional liposome interaction and detection platform opens up pathways for innovative biosensing applications and controllable stoichiometric loading of vesicles with single-molecule control.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました