がんの細胞間相互作用を解析する画期的な方法を提供する新しい研究(New Study Unveils DIISCO: A Revolutionary Method for Analyzing Dynamic Intercellular Interactions in Cancer)

ad

2024-10-11 コロンビア大学

がんの細胞間相互作用を解析する画期的な方法を提供する新しい研究(New Study Unveils DIISCO: A Revolutionary Method for Analyzing Dynamic Intercellular Interactions in Cancer)New Study Unveils DIISCO: A Revolutionary Method for Analyzing Dynamic Intercellular Interactions in Cancer. DIISCO is a machine learning method. Its input is cell-type proportions over time and gene expression of known receptor-ligand pairs. Its output is cell-type dynamics over time and networks characterizing the strength of cell-cell interactions and how they change over time. Image credit: Azizi Lab

新しい研究により、癌における動的な細胞間相互作用を分析するための革命的な手法「DIISCO」が発表されました。DIISCOは機械学習を用いて、細胞タイプの動態や細胞間相互作用の強さの変化を時系列で解析します。従来の方法が静的な視点であるのに対し、DIISCOは時系列のscRNA-seqデータを使用して動的に細胞の反応を追跡します。研究はT細胞とリンパ腫細胞でテストされ、他の方法よりも正確であることが確認されました。

<関連情報>

時系列の単一細胞データから動的な細胞間相互作用を推定するためのベイズフレームワーク A Bayesian framework for inferring dynamic intercellular interactions from time-series single-cell data

Cameron Y Park,Shouvik Mani,Nicolas Beltran-Velez,Katie Maurer,Teddy Huang,Shuqiang Li,Satyen Gohil,Kenneth J Livak,David A Knowles,Catherine J Wu andElham Azizi
Genome Research  Published:September 5, 2024
DOI:10.1101/gr.279126.124

Abstract

Characterizing cell-cell communication and tracking its variability over time are crucial for understanding the coordination of biological processes mediating normal development, disease progression, and responses to perturbations such as therapies. Existing tools fail to capture time-dependent intercellular interactions, and primarily rely on existing databases compiled from limited contexts. We introduce DIISCO, a Bayesian framework designed to characterize the temporal dynamics of cellular interactions using single-cell RNA sequencing data from multiple time points. Our method utilizes structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their coevolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from T cells co-cultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell crosstalk.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました