ナノスケールの凹凸と溝が細胞の行動に大きな変化を引き起こす(Nanoscale Bumps and Grooves Trigger Big Changes in Cell Behavior)

ad

2024-12-03 カリフォルニア大学サンディエゴ校(UCSD)

カリフォルニア大学サンディエゴ校の研究者たちは、ナノスケールの凹凸が細胞の代謝活動に大きな影響を与えることを発見しました。特に、ナノピラー(ナノメートルサイズの柱状構造)上で培養された細胞は、酸化ストレスの低減や脂質代謝の変化を示しました。これらの変化は、細胞膜の構成や細胞間のシグナル伝達に重要な役割を果たす可能性があります。さらに、ナノピラーの配置密度などの幾何学的特性が細胞の応答に影響を及ぼすことも明らかになりました。この研究は、組織工学や老化、疾患研究、新たな治療法の開発において、細胞の代謝活動を制御する新たな手法を提供する可能性があります。

<関連情報>

ナノトポグラフィーが細胞の代謝活動に与える影響をマルチモーダルイメージングで解明 Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic Activities

Zhi Li,Einollah Sarikhani,Sirasit Prayotamornkul,Dhivya Pushpa Meganathan,Zeinab Jahed,and Lingyan Shi

Chemical & Biomedical Imaging  Published: November 18, 2024

DOI:https://doi.org/10.1021/cbmi.4c00051

Abstract

ナノスケールの凹凸と溝が細胞の行動に大きな変化を引き起こす(Nanoscale Bumps and Grooves Trigger Big Changes in Cell Behavior)

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました