AIが不安障害治療の個別化に貢献する可能性 (AI May Help Clinicians Personalize Treatment for Generalized Anxiety Disorder)

ad

2025-03-06 ペンシルベニア州立大学 (Penn State)

ペンシルバニア州立大学の研究者たちは、人工知能(AI)を活用して全般性不安障害(GAD)の治療を個別化する可能性を探りました。彼らは、126名のGAD患者の心理的、社会人口統計的、健康、ライフスタイルなど80以上の初期要因を機械学習モデルで分析しました。その結果、教育水準の高さ、年齢、友人からの支援、ウエスト・ヒップ比、ポジティブな感情が回復に重要であることが示されました。一方、抑うつ感情、日常的な差別経験、過去12ヶ月の精神科医とのセッション数、医師訪問回数は非回復の予測に関連していました。これらの発見は、AIを用いてGAD患者の長期的な回復を予測し、個別化された治療計画を立てる上で有用であると考えられます。

<関連情報>

全般性不安障害の自然経過に対する機械学習ベースの多変量予測モデルの開発 Development of a machine learning-based multivariable prediction model for the naturalistic course of generalized anxiety disorder

Candice Basterfield, Michelle G. Newman
Journal of Anxiety Disorders  Available online: 25 January 2025
DOI:https://doi.org/10.1016/j.janxdis.2025.102978

Highlights

  • Higher depressed affect, daily discrimination, and more mental and medical visits predicted nonrecovery at follow-up.
  • Predictors of recovery at follow-up: having some college education older age, more friend support, higher waist-to-hip ratio, and higher positive affect.
  • This work is a critical step toward developing reliable and feasible machine learning-based predictions for GAD.

Abstract

Background
Generalized Anxiety Disorder (GAD) is a chronic condition. Enabling the prediction of individual trajectories would facilitate tailored management approaches for these individuals. This study used machine learning techniques to predict the recovery of GAD at a nine-year follow-up.

Method
The study involved 126 participants with GAD. Various baseline predictors from psychological, social, biological, sociodemographic and health variables were used. Two machine learning models, gradient boosted trees, and elastic nets were compared to predict the clinical course in participants with GAD.

Results
At nine-year follow-up, 95 participants (75.40 %) recovered. Elastic nets achieved a cross-validated area-under-the-receiving-operator-characteristic-curve (AUC) of .81 and a balanced accuracy of 72 % (sensitivity of .70 and specificity of .76). The elastic net algorithm revealed that the following factors were highly predictive of nonrecovery at follow-up: higher depressed affect, experiencing daily discrimination, more mental health professional visits, and more medical professional visits. The following variables predicted recovery: having some college education or higher, older age, more friend support, higher waist-to-hip ratio, and higher positive affect.

Conclusions
There was acceptable performance in predicting recovery or nonrecovery at a nine-year follow-up. This study advances research on GAD outcomes by understanding predictors associated with recovery or nonrecovery. Findings can potentially inform more targeted preventive interventions, ultimately improving care for individuals with GAD. This work is a critical first step toward developing reliable and feasible machine learning-based predictions for applications to GAD.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました