ディープラーニング支援ラマン分光法により合成カンナビノイドの正確な同定が可能になる(Deep Learning-Enhanced Raman Spectroscopy Enables Accurate Identification of Synthetic Cannabinoids)

ad

2025-07-07 中国科学院(CAS)

ディープラーニング支援ラマン分光法により合成カンナビノイドの正確な同定が可能になる(Deep Learning-Enhanced Raman Spectroscopy Enables Accurate Identification of Synthetic Cannabinoids)
Raman Spectroscopy Coupled with Deep Learning Algorithms for the Precise Differentiation and Identification of Structurally Similar Synthetic Cannabinoids (Image by the XTIPC)

中国科学院新疆理化技術研究所の研究チームは、ラマン分光と深層学習を融合させた新手法を開発し、構造が極めて類似するCA系列の合成カンナビノイド6種を100%の精度で識別することに成功した。ラマン分光は微量物質の分子指紋を捉えるが、類似構造の化合物には識別が困難だった。研究ではCNN(ResNet34)にSENet注意機構を組み込み、分類精度を向上。さらに、判別に寄与するラマン帯域を同定し、深層学習の識別ロジックの理解にも貢献した。濃度や類似薬物による干渉にも影響されず、本手法は物質識別の新たな標準となる可能性を示している。

<関連情報>

深層学習支援ラマン分光分析により、構造的に類似性の高いCAシリーズ合成カンナビノイドの正確な識別が可能になった Deep-Learning-Assisted Raman Spectral Analysis for Accurate Differentiation of Highly Structurally Similar CA Series Synthetic Cannabinoids

Yuwan Du,Wenlong Li,Yuan Liu,Yihang Wang,and Xincun Dou
Analytical Chemistry  Published: May 12, 2025
DOI:https://doi.org/10.1021/acs.analchem.5c01082

Abstract

Precise discrimination of the crucial substances, e.g., synthetic cannabinoids (SCs) that are composed of low-active chemical groups and structurally similar to each other with tiny differences, is a pressing need and of great significance for safeguarding public security and human health. The structure-relevant vibrational spectroscopic techniques, e.g., Raman spectroscopy, could reflect structural fingerprint information on the target; however, the algorithm-assisted phrasing is inevitable. This work achieved the accurate identification of CA series SCs by proposing an attention mechanism involving a CNN algorithm to phrase the Raman data. Specifically, these SCs have only one different chemical group compared to each other, the attention mechanism was introduced to intensify the computation on their structural difference from the massive data, realizing the accurate discrimination. Furthermore, how the spectral peaks corresponded to the specific structure was revealed, which plays a decisive role for the algorithm to distinguish these substances, and provides an instructive reference for differentiating other SCs based on Raman spectra. Hence, this work provides a research paradigm for applying the advanced CNN algorithm-aided Raman spectral analysis to sub-differentiate the substances, strengthening the understanding of spectral information from the sub-molecular level and propelling the integration of interdisciplinary areas.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました