認知機能障害を高精度に予測するAIモデルの研究成果をThe Lancet Regional Health – Western Pacificにて発表 ~認知機能障害スクリーニングが10分から1分程度に短縮、広い実用化に期待~

ad

2025-08-01 国立循環器病研究センター,株式会社太陽生命少子高齢社会研究所

国立循環器病研究センターと太陽生命らの研究により、音声から認知機能障害を約90%の精度で予測するAIモデルが開発されました。1,461人の高齢者の自由会話音声と属性情報を用い、音響・韻律特徴を抽出して機械学習モデルで解析。AUCは最大0.89を記録し、従来10分かかっていた認知機能スクリーニングが約1分で可能となります。非侵襲・高精度な予測により、早期発見と広範な実用化が期待されます。

認知機能障害を高精度に予測するAIモデルの研究成果をThe Lancet Regional Health – Western Pacificにて発表 ~認知機能障害スクリーニングが10分から1分程度に短縮、広い実用化に期待~

(図1)認知機能障害予測モデルの概要

<関連情報>

コミュニティ居住成人における認知機能障害の検出を目的としたAIベースの音声バイオマーカーモデルの開発と検証:日本における横断的研究 Developing and testing AI-based voice biomarker models to detect cognitive impairment among community dwelling adults: a cross-sectional study in Japan

Eri Kiyoshige ∙ Soshiro Ogata ∙ Namhee Kwon ∙ Yuriko Nakaoku ∙ Chisato Hayashi ∙ Nate Blaylock ∙ et al.
The Lancet Regional Health – Western Pacific  Published: June 12, 2025
DOI:https://doi.org/10.1016/j.lanwpc.2025.101598

Summary

Background

Voice is a potential biomarker of cognitive impairment because mild cognitive impairment (MCI) can cause changes in speech patterns and tempo. Artificial intelligence (AI) can deliver voice biomarkers as prediction features, leading to a timely, noninvasive, and cost-effective detection of cognitive impairment. This study aimed to develop and test prediction models utilizing voice biomarkers to detect cognitive impairment, which AI derived from voice data of unstructured conversations in community-dwelling adults in Japan.

Methods

This observational study with a cross-sectional design, included 1461 community-dwelling adults. The outcome was cognitive impairment assessed by the Memory Performance Index score from the MCI screen. Voice data was collected from 3-min open-question interviews and extracted voice biomarkers based on acoustic and prosodic features as a 512-dimensional vector of individual voice information using the voice generator, Wav2Vec2. Other considerable predictors were age, sex, and education. We developed cognitive impairment prediction models by applying the extreme gradient boosting decision tree algorithm and a deep neural network model using 979 participants. Prediction performances were tested by area under the curves (AUCs) in 482 participants who were not used for model development.

Findings

We had 967 women (66·2%), 526 cognitive impairment (36·0%) participants with mean (standard deviation) age and education years of 79·5 (6·3) years old and 11·6 (2·2) years, respectively. The inclusion of voice biomarkers significantly improved AUCs (95% confidence intervals), from 0·80 (0·76, 0·84) to 0·88 (0·84, 0·91) for the age sex model and from 0·78 (0·73, 0·82) to 0·89 (0·86, 0·92) for the age sex and education model (p < 0·0001 for both comparisons by DeLong test).

Interpretation

Our prediction models for cognitive impairment using voice biomarkers can provide significantly timesaving MCI screening with high prediction performances (AUC = 0·89). Voice biomarkers significantly contributed to improving prediction performance.

Funding

Small Business Innovation Research (SBIR Phase 3 Fund), the Intramural Research Fund of Cardiovascular Diseases of the National Cerebral and Cardiovascular Center, and JSPS KAKENHI.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました