DNAを超える分子メッセージネットワークの解明(Scientists Probe Powerful Molecular Messaging System That Goes Beyond DNA)

ad

2025-09-03 パシフィック・ノースウェスト国立研究所(PNNL)

米国PNNLの研究チームは、DNA配列を超えて細胞の機能を調整する「ポスト翻訳修飾(PTMs)」の大規模解析に成功した。PTMsはタンパク質に化学的修飾を加え、多様な機能を瞬時に生み出す分子メッセージングであり、生命活動の柔軟性の鍵とされる。研究者は質量分析技術を用い、600種以上の修飾を同時に検出し、1回の実験で数万件のPTMsを観測可能にした。赤色酵母を用いた実験では、窒素制限下で脂質生成に関与する修飾変化を特定し、バイオ生産効率化の可能性を示した。またPTMsはウイルス感染への免疫応答にも関わることが示唆され、治療戦略にも応用が期待される。本成果は「Predictive Phenomics Initiative」の一環であり、環境要因や分子修飾を統合的に理解する次世代生命科学研究の基盤となる。

DNAを超える分子メッセージネットワークの解明(Scientists Probe Powerful Molecular Messaging System That Goes Beyond DNA)
This image demonstrates how a single protein can have multiple post-translational modifications or PTMs simultaneously. Here, the red particles illustrate sites of cysteine oxidation; the purple—serine, threonine or tyrosine phosphorylation; and the yellow, lysine acetylation. (Illustration by Doo Nam Kim | Pacific Northwest National Laboratory)

<関連情報>

窒素制限は、Rhodotorula toruloidesにおける炭素フラックスと脂質体リモデリングに関与するタンパク質の酸化還元状態とリン酸化に劇的な変化を引き起こす Nitrogen limitation causes a seismic shift in redox state and phosphorylation of proteins implicated in carbon flux and lipidome remodeling in Rhodotorula toruloides

Austin Gluth,Jeffrey J. Czajka,Xiaolu Li,Kent J. Bloodsworth,Josie G. Eder,Jennifer E. Kyle,Rosalie K. Chu,Bin Yang,Wei-Jun Qian,Pavlo Bohutskyi & Tong Zhang
Biotechnology for Biofuels and Bioproducts  Published:21 July 2025
DOI:https://doi.org/10.1186/s13068-025-02657-y

Abstract

Background

Oleaginous yeast are prodigious producers of oleochemicals, offering alternative and secure sources for applications in foodstuff, skincare, biofuels, and bioplastics. Nitrogen starvation is the primary strategy used to induce oil accumulation in oleaginous yeast as part of a global stress response. While research has demonstrated that post-translational modifications (PTMs), including phosphorylation and protein cysteine thiol oxidation (redox PTMs), are involved in signaling pathways that regulate stress responses in metazoa and algae, their role in oleaginous yeast remain understudied and unexplored.

Results

Towards linking the yeast oleaginous phenotype to protein function, we integrated lipidomics, redox proteomics, and phosphoproteomics to investigate Rhodotorula toruloides under nitrogen-rich and starved conditions over time. Our lipidomics results unearthed interactions involving sphingolipids and cardiolipins with ER stress and mitophagy. Our redox and phosphoproteomics data highlighted the roles of the AMPK, TOR, and calcium signaling pathways in regulation of lipogenesis, autophagy, and oxidative stress response. As a first, we also demonstrated that lipogenic enzymes including fatty acid synthase are modified as a consequence of shifts in cellular redox states due to nutrient availability.

Conclusions

We conclude that lipid accumulation is largely a consequence of carbon rerouting and autophagy governed by changes to PTMs, and not increases in the abundance of enzymes involved in central carbon metabolism and fatty acid biosynthesis. Our systems-level approach sets the stage for acquiring multidimensional data sets for protein structural modeling and predicting the functional relevance of PTMs using Artificial Intelligence/Machine Learning (AI/ML). Coupled to those bioinformatics approaches, the putative PTM switches that we delineate will enable advanced metabolic engineering strategies to decouple lipid accumulation from nitrogen limitation.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました