視野検査AIによる検査時間の短縮と高精度化

ad

2025-09-18 愛媛大学

愛媛大学大学院医学系研究科の大野真由子准教授らは、緑内障診断に用いる「視野検査」のAI支援システムを開発した。新手法は、従来20分程度かかっていた検査時間を約8分に短縮しつつ、より高精度に視野欠損を検出できる。AIが患者の応答パターンをリアルタイムで解析し、出題刺激を効率化することで、疲労や集中力低下の影響を軽減できる。緑内障は早期発見が重要だが、検査負担が大きく受診率が低いことが課題であり、本技術は診断効率と患者の利便性を大幅に改善する可能性がある。本研究成果はTranslational Vision Science & Technology誌に掲載。

視野検査AIによる検査時間の短縮と高精度化
ViFTのモデル構造

<関連情報>

深層強化学習による視野検査のための視野トランスフォーマ ViFT: Visual field transformer for visual field testing via deep reinforcement learning

Shozo Saeki, Minoru Kawahara, Hirohisa Aman
Medical Image Analysis
DOI:https://doi.org/10.1016/j.media.2025.103721

Highlights

  • ViFT single agent can control the perimetry process fully.
  • ViFT learns the relationships of visual field locations without any pre-defined information.
  • ViFT learning process can consider the patient perception uncertainty.
  • ViFT can measure half as measurement times as the other strategies maintain high accuracy.

Abstract

Visual field testing (perimetry) quantifies a patient’s visual field sensitivity to diagnosis and follow-up on their visual impairments. Visual field testing would require the patients to concentrate on the test for a long time. However, a longer testing time makes patients more exhausted and leads to a decrease in testing accuracy. Thus, it is helpful to develop a well-designed strategy to finish the testing more quickly while maintaining high accuracy. This paper proposes the visual field transformer (ViFT) for visual field testing with deep reinforcement learning. This study contributes to the following four: (1) ViFT can fully control the visual field testing process. (2) ViFT learns the relationships of visual field locations without any pre-defined information. (3) ViFT learning process can consider the patient perception uncertainty. (4) ViFT achieves the same or higher accuracy than the other strategies, and half as test time as the other strategies. Our experiments demonstrate the ViFT efficiency on the 24-2 test pattern compared with other strategies.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました