AIで家庭血圧測定の中断を予測~約30万人のデータから“続けられる測定”を支援~

ad

2025-12-18 京都大学

京都大学の奥野恭史教授らは、オムロンヘルスケア株式会社との共同研究により、約30万人分の家庭血圧測定データを用いて、測定継続の中断をAIで予測するモデルを開発した。家庭血圧測定は高血圧管理に不可欠だが、多くの人が途中で中断する課題がある。本研究では、年齢や性別などの基本属性と、測定開始から2週間の血圧値・測定頻度を入力として、4週間後に測定を継続しているかを機械学習で予測した。その結果、AUC=0.93という高い精度で中断リスクを識別でき、平日の測定頻度低下や血圧値の極端な高低が中断要因であることが示された。本モデルにより、中断が予測される利用者を早期に特定し、医療従事者やデバイスからの個別支援につなげることで、実効性の高い高血圧管理の実現が期待される。

AIで家庭血圧測定の中断を予測~約30万人のデータから“続けられる測定”を支援~

<関連情報>

機械学習を⽤いた家庭⾎圧測定における測定継続性の予測 Predicting measurement continuity in home blood pressure monitoring using machine learning

Asami Matsumoto,Yohei Mineharu,Hirohiko Kohjitani,Hiroshi Koshimizu & Yasushi Okuno
Hypertension Research  Published:07 November 2025
DOI:https://doi.org/10.1038/s41440-025-02444-0

Abstract

Hypertension is a leading risk factor for cardiovascular diseases, thereby necessitating effective management through regular blood pressure monitoring. Although home monitoring is beneficial for managing hypertension, maintaining consistent measurement frequency remains challenging. This study aimed to develop a model to predict measurement inactivity and to identify clinically relevant risk factors for declining adherence using machine learning, thereby allowing for targeted interventions. Using a large-scale dataset (>199 million measurement records) from 295,758 health app users, we employed a LightGBM (Light Gradient Boosting Machine) model to predict future inactivity according to 2-week measurement patterns and users’ demographics. The model demonstrated high predictive accuracy, with areas under the receiver operating characteristic curve of 0.930 and 0.851 for 28- and 56-day predictions, respectively. SHAP (SHapley Additive exPlanations) analysis revealed elevated dropout risks among both younger and older participants, women, and users who did not report sex information. The maximum systolic blood pressure (SBP) recorded during the 2-week period was also identified as a significant predictor of dropout, showing a U-shaped association wherein both low and high extremes increased the risk. This maximum SBP value, which is rarely used in routine clinical assessments, offered unique insights into dropout behavior, further supported by descriptive statistics. Additionally, a reduction in weekday measurement frequency showed to be a major predictor of future discontinuation. Therefore, our model can identify dropout factors that are difficult to detect by conventional methods, and through accurate prediction, it supports early clinical interventions to improve monitoring adherence and blood pressure control.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました