赤血球の硬さが鎌状赤血球症状の違いを生む仕組みを解明(‘Stiff’ cells provide new explanation for differing symptoms in sickle cell patients)

ad

2026-02-09 ミネソタ大学

米国のミネソタ大学の研究チームは、鎌状赤血球症(Sickle Cell Disease)の患者間で症状の重さが異なる理由について、新たな物理・生物学的説明を提示した。研究によると、赤血球の「硬さ(剛性)」の違いが、血管内での詰まりや血流障害の起こりやすさを左右し、痛み発作や臓器障害の程度に大きく影響することが示された。従来は遺伝的要因やヘモグロビン異常が主に注目されてきたが、本研究は、細胞の機械的性質そのものが病態進行に重要な役割を果たすことを明らかにした。細胞が硬くなるほど微小血管を通過しにくくなり、炎症や低酸素状態を引き起こしやすい。本成果は、症状予測の新指標や、細胞の柔軟性を改善する治療法開発につながる可能性があり、個別化医療の推進に貢献する重要な知見である。

赤血球の硬さが鎌状赤血球症状の違いを生む仕組みを解明(‘Stiff’ cells provide new explanation for differing symptoms in sickle cell patients)
Stiff cells organize within the flow, creating low (left) concentration regions and high (right) concentration regions, which drastically increases flow resistance. Photo provided by Hannah Szafraniec

<関連情報>

鎌状赤血球症における血流のマルチスケールダイナミクスは懸濁液の物理によって制御される Suspension physics govern the multiscale dynamics of blood flow in sickle cell disease

Hannah M. Szafraniec, Freya Bull, John M. Higgins, Howard A. Stone, […] , and David K. Wood
Science Advances  Published:1 Jan 2026
DOI:https://doi.org/10.1126/sciadv.adx3842

Abstract

From diabetes to malaria, altered blood flow contributes to poor clinical outcomes. Heterogeneity in red blood cell (RBC) properties within and across individuals has hindered our ability to establish the multiscale mechanisms driving pathological flow dynamics in such diseases. To address this, we develop microfluidic platforms to measure RBC properties and flow dynamics in the same blood samples from patients with sickle cell disease (SCD). We find that effective blood viscosity across individuals is explained by the proportion of stiff RBCs, exhibiting qualitative similarities to rigid-particle suspensions, despite considerable mechanical heterogeneity. By combining simulations with spatially resolved measurements of cell dynamics, we show how features of emergent rheology are governed by spatiotemporal cell organization, via margination at intermediate oxygen tensions, and localized jamming caused by spatial hematocrit variations under hypoxia. Our work defines the suspension physics underlying pathological blood flow in SCD and, more broadly, emergent rheology in heterogeneous particle suspensions.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました