砂漠コケの乾燥耐性の分子メカニズムを解明(Researchers Uncover Molecular Mechanisms of Desiccation Tolerance in Desert Moss)

ad

2025-09-01 中国科学院(CAS)

中国科学院新疆生態地理研究所の張道遠教授らは、砂漠性コケ植物シモフリゴケ(Syntrichia caninervis)の乾燥耐性に関わるリン酸化依存的な分子機構を解明した。成果は『The Plant Journal』に掲載された。研究チームは4Dラベルフリー高スループットプロテオーム・リン酸化プロテオーム解析を用いて脱水・再水和過程のタンパク質動態を調べ、重要なリン酸化タンパク質ScDHAR1を同定。特定のセリン残基(S29, S218)のリン酸化により活性が大幅に上昇し、活性酸素種(ROS)の除去能を高め酸化障害を抑制することが明らかになった。統合解析により、脱水期には光合成、グルタチオン代謝、クエン酸回路、フェニルプロパノイド生合成、DNA修復などが協調的に細胞安定性を維持する一方、再水和期にはリボソーム生合成、エネルギー代謝、フェニルアラニン代謝、大分子複合体形成が活性化されることが示された。特にグルタチオン代謝が中心的な調節経路として機能していた。本研究は極端乾燥への耐性と迅速な回復の仕組みを理解し、干ばつ耐性作物育種への遺伝的基盤を提供するものである。

<関連情報>

リン酸化プロテオミクス解析が砂漠苔類Syntrichia caninervisの極限乾燥耐性メカニズムに新たな知見を提供する Phosphoproteomics analysis provides novel insight into the mechanisms of extreme desiccation tolerance of the desert moss Syntrichia caninervis

Fangliu Yin, Xuncheng Liu, Amangul Hawar, Wenwan Bai, Qilin Yang, Huan Zhang, Ting Cao, Daoyuan Zhang, Xiaoshuang Li
The Plant Journal  Published: 06 August 2025
DOI:https://doi.org/10.1111/tpj.70373

SUMMARY

Syntrichia caninervis is a model species for research on desiccation tolerance (DT) because it is capable of rapidly responding to drastic changes in water conditions. Phosphorylation, a key post-translational modification process that is rapid and reversible, enables the rapid regulation of protein functions, aiding plants to quickly adapt to changing environments. Modifications to phosphorylation may play a crucial role in the DT of S. caninervis, although no studies have been published. Here, we report a 4D label-free high-resolution dynamic proteomic and phosphoproteomic analysis of S. caninervis during dehydration and rehydration, allowing for the quantification of 2854 proteins and 1177 phosphoproteins, including 1447 differentially expressed proteins (DEPs) and 699 differentially phosphorylated proteins (DPPs). Among the phosphoproteins, 36.5% displayed changes in protein abundance. The proteomic and phosphoproteomic changes involved proteins (DEPs and DPPs) that were mainly involved in photosynthesis, glutathione metabolism, the citrate cycle, and the biosynthesis of secondary metabolism pathways during dehydration. During rehydration, DEPs and DPPs were mainly associated with processes related to ribosome and energy metabolism. In summary, during dehydration, phosphorylation mainly regulates signal transduction and metabolic processes, allowing plants to adapt to a loss of water. During rehydration, phosphorylation controls repair and recovery mechanisms, restoring metabolic activity and reestablishing cellular functions. ScDHAR1, a protein involved in glutathione metabolism, was differentially phosphorylated at two serine sites (S29 and S218) in response to desiccation. Further analysis revealed that phosphorylation of S29/S218 in ScDHAR1 significantly increased its enzymatic activity, thereby enhancing the DT of S. caninervis in situ. This work establishes a phosphoprotein database for a DT moss. These findings not only broaden our understanding of S. caninervis DT but also fill knowledge gaps in the field of phosphoproteomics in DT mosses, while providing valuable data resources for future related research.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました